Time-space fractional governing equations of transient groundwater flow in confined aquifers: Numerical investigation

2018 ◽  
Vol 32 (10) ◽  
pp. 1406-1419 ◽  
Author(s):  
Tongbi Tu ◽  
Ali Ercan ◽  
M. Levent Kavvas
2017 ◽  
Author(s):  
M. Levent Kavvas ◽  
Tongbi Tu ◽  
Ali Ercan ◽  
James Polsinelli

Abstract. A dimensionally-consistent governing equation of transient, saturated groundwater flow in fractional time in a multi-fractional confined aquifer is developed. First, a continuity equation for transient groundwater flow in fractional time and in a multi-fractional, multi-dimensional confined aquifer is developed. An equation of water flux is also developed. The governing equation of transient groundwater flow in a multi-fractional, multi-dimensional confined aquifer in fractional time is then obtained by combining the fractional continuity and water flux equations.


2014 ◽  
Vol 15 (2) ◽  
pp. 278-287 ◽  
Author(s):  
Abdon Atangana ◽  
Ernestine Alabaraoye

We described a groundwater model with prolate spheroid coordinates, and introduced a new parameter, namely τ the silhouette influence of the geometric under which the water flows. At first, we supposed that the silhouette influence approaches zero; under this assumption, the modified equation collapsed to the ordinary groundwater flow equation. We proposed an analytical solution to the standard version of groundwater as a function of time, space and uncertainty factor α. Our proposed solution was in good agreement with experimental data. We presented a good approximation to the exponential integral. We obtained an asymptotic special solution to the modified equation by means of the Adomian decomposition and variational iteration methods.


1976 ◽  
Vol 98 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Choong Se Kim ◽  
Paul M. Chung

The governing equations of thermal ignition are analyzed for porous solid fuel, such as coal, of various two-dimensional and axisymmetric geometries by the Laplace asymptotic method. Mass diffusion of the gaseous oxidant through the porous fuel is included. The nonlinear partial differential equations of energy and mass balances in time-space coordinates containing the Arrhenius volumic chemical reaction terms are analyzed. By employing the Laplace asymptotic technique and by invoking a certain limit theorem, the governing equations are reduced to a first order ordinary differential equation governing the fuel surface temperature, which is readily solved numerically. Detailed discussion of the effects of the various governing parameters on ignition is presented. Because of the basically closed-form nature of the solutions obtained, many general and fundamental aspects of the ignition criteria hitherto unknown are found.


Author(s):  
Alireza Dastan ◽  
Omid Abouali

In this paper pressure drop and particle deposition in a microchannel with a hydraulic diameter of 225 micrometer is investigated numerically. Several hundred micron length fibers caught at the entrance of the channels making a “fiber web” also is modeled in this research. Governing equations for the flow field are solved with an Eulerian approach while the equations of particle motion in the flow are solved by a Lagrangian approach. Assuming the symmetry in the domain, one channel and the corresponding plenum are studied in the computational domain. For studying the effects of fibers in the flow, two fiber webs with four and six solid fibers are studied. The increase of pressure drop in the microchannel because of the entrance fiber web is computed and discussed. Also deposition and collection of the particles with various diameters at the fiber webs are also presented.


1986 ◽  
Vol 84 (3-4) ◽  
pp. 323-332 ◽  
Author(s):  
Shri Krishna Shakya ◽  
Sita Ram Singh

2007 ◽  
Vol 12 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Guoping Tang ◽  
Akram N. Alshawabkeh ◽  
Dionisio Bernal

2016 ◽  
Author(s):  
Ali Ercan ◽  
M. Levent Kavvas

Abstract. Although fractional integration and differentiation have found many applications in various fields of science, such as physics, finance, bioengineering, continuum mechanics and hydrology, their engineering applications, especially in the field of fluid flow processes, are rather limited. In this study, a finite difference numerical approach is proposed to solve the time-space fractional governing equations of one-dimensional unsteady/non-uniform open channel flow process. By numerical simulations, results of the proposed fractional governing equations of the open channel flow process were compared with those of the standard Saint Venant equations. Numerical simulations showed that flow discharge and water depth can exhibit heavier tails in downstream locations as space and time fractional derivative powers decrease from 1. The fractional governing equations under consideration are generalizations of the well-known Saint Venant equations, which are written in the integer differentiation framework. The new governing equations in the fractional order differentiation framework have the capability of modeling nonlocal flow processes both in time and in space by taking the global correlations into consideration. Furthermore, the generalized flow process may shed light into understanding the theory of the anomalous transport processes and observed heavy tailed distributions of particle displacements in transport processes.


Sign in / Sign up

Export Citation Format

Share Document