Numerical Investigation of a Fiber Web Effect on the Pressure Drop and Particles Collection in a Microchannel

Author(s):  
Alireza Dastan ◽  
Omid Abouali

In this paper pressure drop and particle deposition in a microchannel with a hydraulic diameter of 225 micrometer is investigated numerically. Several hundred micron length fibers caught at the entrance of the channels making a “fiber web” also is modeled in this research. Governing equations for the flow field are solved with an Eulerian approach while the equations of particle motion in the flow are solved by a Lagrangian approach. Assuming the symmetry in the domain, one channel and the corresponding plenum are studied in the computational domain. For studying the effects of fibers in the flow, two fiber webs with four and six solid fibers are studied. The increase of pressure drop in the microchannel because of the entrance fiber web is computed and discussed. Also deposition and collection of the particles with various diameters at the fiber webs are also presented.

2015 ◽  
Vol 813-814 ◽  
pp. 736-741
Author(s):  
M. Muthukannan ◽  
P. Rajesh Kanna ◽  
S. Jeyakumar ◽  
J.Y. Raja Shangaravel ◽  
S. Raghu ◽  
...  

In the present numerical investigation, the flow field of confined slot air jet in a rectangular computational domain is reported. In the present work the flow field parameters like reattachment length, vortex center and horizontal velocity profiles for various Reynolds numbers and for various aspect ratios are presented .The present study reveals that the vortex centers are moving in a downstream direction with increase in Reynolds number. The reattachment length is directly dependent on the Reynolds numbers. In case of vortex dynamics, the vortex size is indirectly dependent on the inlet jet width. In the present investigation, SIMPLE algorithm is used to solve the governing equations. It is concluded that the aspect ratio and the Reynolds number are playing dominant roles in flow field of the present computational domain.


Solar Energy ◽  
2019 ◽  
Vol 182 ◽  
pp. 348-360 ◽  
Author(s):  
Zhao Lu ◽  
Alfonso Chinnici ◽  
Mehdi Jafarian ◽  
Maziar Arjomandi ◽  
Graham J. Nathan

2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Ranjith Kumar Valaparla ◽  
Karthik Balasubramanian ◽  
Kupireddy Kiran Kumar

AbstractPurpose: Numerical investigation was carried out to study the hydro-thermal characteristics in circular wavy microchannels (CWMCs) with sidewall rib. Thermal resistance and pressure drop penalty were compared with sinusoidal wavy microchannels (SWMCs) design. Parametric study on sidewall rib was also carried to minimize the pressure drop penalty and to achieve lower thermal resistance. Introducing sidewall rib in the CWMCs leads to the formation of more Deans vortices. This leads to an effective fluid mixing and augments the convective heat transfer. Design methodology/approach: A computational solid domain was created in SOLIDWORKS and the fluid domain was produced by circular arc profile for the entire length of heat sink. 3-D numerical investigation was carried out using ANSYS FLUENT software. Created computational domain was imported into ANSYS WORKBENCH. Meshing was executed in ANSYS mesh module. The computational domains were meshed using hexahedral elements adopting match control on both sides of microchannel (MC). The numerical investigation was carried out in the Re range from 100 to 300 with constant heat flux (50 W/cm2) applied at the bottom of the channel. Heat transfer and fluid flow characteristics were explained with velocity vectors, velocity contours and temperature contours. Findings: From numerical studies, it is concluded that CWMC with sidewall rib width (0.15 mm) leads to 33.6 % lower thermal resistance than SWMC with pressure drop penalty. Originality/Value: Present study is useful to identify the optimum deign to augment the heat dissipation performance of microchannel heat sink.


Author(s):  
Blaž Mikuž ◽  
Ferry Roelofs

Abstract Reproduction of turbulent flow and heat transfer inside a pressurized water reactor (PWR) fuel assembly is a challenging task due to the complex geometry and the huge computational domain. Capability of a wall-modelled RANS approach has been examined, which had already been validated against the measurements of the MATiS-H experiment. The method is here expanded to a larger computational domain aiming to reproduce flow and thermal field in the entire PWR fuel assembly. Namely, in the first part of the present study, wall-modelled RANS is performed in a relatively short section of the representative PWR fuel assembly containing one single mixing grid with an array of 15×15 fuel rods. Linear and nonlinear eddy-viscosity turbulence models have been applied, however no significant difference is observed in the predicted pressure drop in the fuel assembly. The obtained predictions revealed an interesting pattern of swirl flow as well as diagonal cross flow downstream the mixing grid, which is driven by the applied design of split-type mixing vanes. In the second part, the computational model is extended to a domain representative of a complete PWR fuel assembly with ten mixing grids, inlet and outlet sections. Pressure drop and flow field are analysed together with the predicted temperature and potential hot spots. In spite of a relatively coarse spatial resolution of the applied approach, the wall-modelled RANS provided promising results at least for the qualitative prediction of the pressure, flow field and location of hot spots.


Author(s):  
Chanjun Meng ◽  
Bo Yuan ◽  
Chuan He ◽  
Chunfu Xi ◽  
Liangming Pan

Fluids ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
J. Barry Greenberg ◽  
David Katoshevski

A theoretical investigation of the influence of a standing wave flow-field on the dynamics of a laminar two-dimensional spray diffusion flame is presented for the first time. The mathematical analysis permits mild slip between the droplets and their host surroundings. For the liquid phase, the use of a small Stokes number as the perturbation parameater enables a solution of the governing equations to be developed. Influence of the standing wave flow-field on droplet grouping is described by a specially constructed modification of the vaporization Damkohler number. Instantaneous flame front shapes are found via a solution for the usual Schwab–Zeldovitch parameter. Numerical results obtained from the analytical solution uncover the strong bearing that droplet grouping, induced by the standing wave flow-field, can have on flame height, shape, and type (over- or under-ventilated) and on the existence of multiple flame fronts.


JOM ◽  
2021 ◽  
Author(s):  
Yongli Xiao ◽  
Yufeng Tian ◽  
Qiang Wang ◽  
Guangqiang Li

Sign in / Sign up

Export Citation Format

Share Document