Dual effects of precipitation and evaporation on lake water stable isotope composition in the monsoon region

2019 ◽  
Author(s):  
Mingquan Hua ◽  
Xinping Zhang ◽  
Tianci Yao ◽  
Zidong Luo ◽  
Hui Zhou ◽  
...  
2020 ◽  
Author(s):  
Matthias Cuntz ◽  
Lucas A Cernusak ◽  

<p>Several important isotopic biomarkers derive at least part of their signal from the stable isotope composition of leaf water (e.g., leaf wax δ<sup>2</sup>H, cellulose δ<sup>2</sup>H and δ<sup>18</sup>O, lignin δ<sup>18</sup>O). In order to interpret these isotopic proxies, it is therefore helpful to know which environmental variable most strongly controls a given leaf water stable isotope signal. We collated observations of the stable isotope compositions of leaf water, xylem water, and atmospheric vapour, along with air temperature and relative humidity, to test whether the dominant driver of leaf water <sup>2</sup>H concentration could differ from that of <sup>18</sup>O concentration. Our dataset comprises 690 observations from 35 sites with broad geographical coverage. We limited our analysis to daytime observations, when the photosynthetic processes that incorporate the leaf water isotopic signal primarily take place. The Craig-Gordon equation was generally a good predictor for daytime bulk leaf water stable isotope composition for both δ<sup>2</sup>H (R<sup>2</sup>=0.86, p<0.001) and δ<sup>18</sup>O (R<sup>2</sup>=0.63, p<0.001). It showed about 10% admixture of source water was caused by unenriched water pools such as leaf veins or the Péclet effect. Solving the Craig-Gordon equation requires knowledge of relative humidity, air temperature, and the stable isotope compositions of source water and atmospheric vapour. However, it is not possible to invert the Craig-Gordon equation to solve for one of these parameters unless the others are known. Here we show that the two isotopic signals of δ<sup>2</sup>H and δ<sup>18</sup>O are predominantly driven by different environmental variables: leaf water δ<sup>2</sup>H correlated most strongly with the δ<sup>2</sup>H of source water (R<sup>2</sup>=0.68, p<0.001) and atmospheric vapour (R<sup>2</sup>=0.63, p<0.001), whereas leaf water δ<sup>18</sup>O correlated most strongly with air relative humidity (R<sup>2</sup>=0.46, p<0.001). We conclude that these two isotopic signals of leaf water are not simply mirror images of the same environmental information, but carry distinct signals of different climate factors, with crucial implications for the interpretation of downstream isotopic biomarkers.</p>


2020 ◽  
Author(s):  
Adnan Moussa ◽  
Ginevra Fabiani ◽  
Julian Klaus

<p>The vadose zone is a key component of the critical zone (CZ) and the interface of the atmosphere and the subsurface. A better understanding of critical zone hydrological processes is key for improving hydrological models and sustainable resource management. Isotopes of Hydrogen (<sup>2</sup>H) and Oxygen (<sup>18</sup>O) are a common tool to decipher hydrological processes in the CZ. However, there is still lack in understanding the spatiotemporal distribution of the soil water stable isotope composition (<sup>2</sup>H and <sup>18</sup>O) at catchment scale. Until today, only a few studies evaluated long-term variability and spatial patterns. Here we present results of bi-weekly measurements of the soil water stable isotope over nine months. SWI composition were measured using direct vapour equilibration and accounted for different landscape elements (eight locations per campaign) in the forested Weierbach (~0.42 km<sup>2</sup>) experimental catchment in Luxembourg.</p><p>Preliminary results show that a strong similarity of δ<sup>18</sup>O depth profiles between different landscape elements at the same sampling date. However, after a snowmelt event we observed a much higher variability throughout the catchment likely from different melt, fractionation, and infiltration processes. The δ<sup>18</sup>O profiles throughout the landscape change consistently with time driven by a combination of rainfall and evaporation. Lc-excess data showed that soil water was experiencing kinetic evaporative fractionation in the top 30 cm of the soil throughout the year. The presented high frequent data on isotopic composition of soil pore water are useful to analyse spatial difference in vadose zone processes for better understanding soil-atmosphere interaction and flow processes. Eventually such data can be used for constraining spatially distributed hydrological models.</p>


2020 ◽  
Author(s):  
Traian Brad ◽  
Aurel Persoiu ◽  
Artur Ionescu

<p>The second largest city in Romania (Cluj-Napoca) is supplied with drinking water originating from the upper basin of Somesul Mic river (SMR). As part of an ongoing project, we aim to investigate the origin, flow and quality of water consumed in the city by collecting monthly river, lake, tap and groundwater and performing physical, chemical and stable isotope analyses (d18O and d2H in water, and d13C in DIC). However, owing to the different types of water bodies to be sampled and the local climate, with freezing conditions for up to six months in the upper basin, the results of the analyses might indicate time and space specific conditions, rather than the general hydrologic conditions we were targeting. Thus, we have modified our approach, and have devised a secondary sampling strategy in order to address these issues.</p><p>We present here a sampling strategy that aims to disentangle between different factors controlling the stable isotope composition of surface waters under different geomorphologic and climatic conditions and minimize the risk of introducing unwanted biases. Briefly, we have sampled water under both freezing and non-freezing conditions from the rivers and lakes along the main trunk of SMR and measured d18O (and d2H) in water, as well as d13C in DIC. Our data shows that the presence of ice strongly affects that stable isotope composition of river and lake water (as a result of strong kinetic processes resulting from the specifics of water solidification) and the results of these measurements are meaningless when trying to understand the connections between the various water bodies. Contrary, d13C in DIC was less affected by the freezing processes, a finding mirrored by the chemical values of the water. However, the later were strongly influenced by local geomorphologic conditions, both in summer and winter. In lakes, sampling at different locations on the surface and at different depths resulted in a wide range of stable isotope ratios for O and H, unrelated to values measured in the inflowing and outflowing streams. Overall, our data suggest that monthly stable isotope values of river and lake water along a flow path are difficult to interpret in terms of residence and transit times and mixing of sources. Thus, in regions where freezing is recurrent, kinetic fractionation processes have a contribution to the “final” stable isotope composition of water that is higher than that resulting from other (hydrological) processes. Contrary, more valuable data was obtained when the stable isotope composition of surface waters was compared with that of precipitation water, allowing for possible identification of moisture sources and pathways feeding the local water bodies. We conclude that in order to generate valuable data, quality control must first start with designing site-specific protocols for sampling and stable isotope analyses of water and factors altering the “sought-for” values should be considered first before interpreting the results.</p><p>The IAEA partly supported this study through contract numbers 23870 and 23550. The research leading to these results has received funding from the EEA Grants 2014-2021, under Project contract 4/2019 (GROUNDWATERISK).</p>


Sign in / Sign up

Export Citation Format

Share Document