scholarly journals Controlled outflow of storm water without flooding

2018 ◽  
Vol 168 ◽  
pp. 02001
Author(s):  
Karel Adámek ◽  
Jan Kolář ◽  
Pavel Peukert

There are many types of devices used for various purposes, called as vortex valves. The aim of this paper is the design of vortex valves, determined for controlled higher outflows from retention tanks. The paper follows the previous study of smaller sizes of vortex valves. The method of flow numerical simulation allows us to identify the reason of the two-branch operational (resistance) characteristic of the solved valves and the suitable sizes of the main valve dimensions for the given flow rate and water level.

2020 ◽  
Vol 2020 (2) ◽  
pp. 10-20
Author(s):  
Vadym Orel ◽  
◽  
Bohdan Pitsyshyn ◽  
Yaryna Voron ◽  
◽  
...  

The flow-rate restriction for storm sewage network is substantiated. Possible causes of flooding of territories by storm water in the case of emergency and methods of storm waters management are considered. The article is devoted to an increase in throughput of storm sewage networks with the help of in-line storm water detention tank installed at the beginning of storm sewage network and dragreducing polymers (DRP). It is proposed to introduce DRPs in the form of solution directly into the sewage network through a storm-water inlet or through a sewer manhole. The introduction is conducted from a tank (cistern) in which there is a device for preparing an aqueous solution from the raw materials of DRP. For a square (in horizontal plane) catchment, in the case of point-type water drainage, the numerical simulation of the work of a system of storm water sewage with the help of DRP has been carried out.


2017 ◽  
pp. 336-344
Author(s):  
Vilmantė Karlavičienė ◽  
Raimondas Zaborovskis ◽  
Vaidas Vinciūnas ◽  
Mindaugas Rimeika

Since most of the contaminants in surface waters fall with storm water runoff, it is very important to correctly describe the content of pollutants discharging with them (kilograms or tons) for a given unit of time (hour, shift, day, month or year). Measurements are complicated by the fact that the flow rate and pollutant concentration is very variable over time. The aim of the research was to determine the grain size of sweepings accumulated on the surfaces of the researched territory and to investigate the impact of storm water runoff sediments on the accuracy of measurements of water level height using the hydrostatic water level sensor. For the experiment four typical Vilnius city streets, two storm water runoff treatment plants and also the streets sweeping machine was chosen. Storm water runoff in urban areas has an abundance of sediment, therefore, studying the hydrostatic water level sensor DI 240 Diver suitability to determine storm water runoff flow rate, for the experimental studies the impact of sludge and sand for measuring accuracy was chosen. Particles with diameters ranging from 0.315 to 0.630 mm consisting the maximum weight (the average value of 24 g per 100 g of the sample) of street sweepings. Storm water runoff treatment plants sediments are approximately 60% of the smallest particles with a size of less than 0.05 mm. Particles of less than 0.25 mm consisting about 80% of sediment. During laboratory and full scale tests it was determined, that there is no significant affect of sediments on the accuracy of the hydrostatic water level sensor measurements. The average square error (standard deviation) was 0.567 cm when the measurement uncertainty was 0.0021 cm.


Author(s):  
Pengju Huo ◽  
Xiaohong Li ◽  
Yang Liu ◽  
Haiying Qi

AbstractThe influences of loose gas on gas-solid flows in a large-scale circulating fluidized bed (CFB) gasification reactor were investigated using full-loop numerical simulation. The two-fluid model was coupled with the QC-energy minimization in multi-scale theory (EMMS) gas-solid drag model to simulate the fluidization in the CFB reactor. Effects of the loose gas flow rate, Q, on the solid mass circulation rate and the cyclone separation efficiency were analyzed. The study found different effects depending on Q: First, the particles in the loop seal and the standpipe tended to become more densely packed with decreasing loose gas flow rate, leading to the reduction in the overall circulation rate. The minimum Q that can affect the solid mass circulation rate is about 2.5% of the fluidized gas flow rate. Second, the sealing gas capability of the particles is enhanced as the loose gas flow rate decreases, which reduces the gas leakage into the cyclones and improves their separation efficiency. The best loose gas flow rates are equal to 2.5% of the fluidized gas flow rate at the various supply positions. In addition, the cyclone separation efficiency is correlated with the gas leakage to predict the separation efficiency during industrial operation.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


Author(s):  
Lingjiu Zhou ◽  
Zhengwei Wang ◽  
Yongyao Luo ◽  
Guangjie Peng

The 3-D unsteady Reynolds averaged Navier-tokes equations based on the pseudo-homogeneous flow theory and a vapor fraction transport-equation that accounts for non-condensable gas are solved to simulate cavitating flow in a Francis turbine. The calculation results agreed with experiment data reasonably. With the decrease of the Thoma number, the cavity first appears near the centre of the hub. At this stage the flow rate and the efficiency change little. Then the cavity near the centre of the hub grows thick and the cavities also appear on the blade suction side near outlet. With further reduce of the Thoma number the cavitation extends to the whole flow path, which causes flow rate and efficiency decrease rapidly.


Author(s):  
Yoshiyuki Iso ◽  
Xi Chen

Gas-liquid two-phase flows on the wall like liquid film flows, which are the so-called wetted wall flows, are observed in many industrial processes such as absorption, desorption, distillation and others. For the optimum design of packed columns widely used in those kind of processes, the accurate predictions of the details on the wetted wall flow behavior in packing elements are important, especially in order to enhance the mass transfer between the gas and liquid and to prevent flooding and channeling of the liquid flow. The present study focused on the effects of the change of liquid flow rate and the wall surface texture treatments on the characteristics of wetted wall flows which have the drastic flow transition between the film flow and rivulet flow. In this paper, the three-dimensional gas-liquid two-phase flow simulation by using the volume of fluid (VOF) model is applied into wetted wall flows. Firstly, as one of new interesting findings in this paper, present results showed that the hysteresis of the flow transition between the film flow and rivulet flow arose against the increasing or decreasing stages of the liquid flow rate. It was supposed that this transition phenomenon depends on the history of flow pattern as the change of curvature of interphase surface which leads to the surface tension. Additionally, the applicability and accuracy of the present numerical simulation were validated by using the existing experimental and theoretical studies with smooth wall surface. Secondary, referring to the texture geometry used in an industrial packing element, the present simulations showed that surface texture treatments added on the wall can improve the prevention of liquid channeling and can increase the wetted area.


2021 ◽  
Vol 22 ◽  
pp. 22
Author(s):  
Jun Li ◽  
Hal Gurgenci ◽  
Jishun Li ◽  
Lun Li ◽  
Zhiqiang Guan ◽  
...  

Supercritical carbon dioxide (SCO2) Brayton cycle microturbine can be used for the next generation of solar power. In order to comprehensively optimize the supporting system and cooling device parameters of Brayton cycle shafting, the concept of chaos interval is introduced by chaotic mapping, and the CIMPSO algorithm is proposed to optimize the multi-objective rotor system model with nonlinear variables.The results show that the resonance amplitude of the optimized model is effectively attenuated, and the critical speed point is far away from the working speed, which shows the robustness of the optimization algorithm. Finally, based on arbitrary several sets of optimization solutions and empirical parameters, the finite element model of shafting is established for simulation, and the results show that the optimized solution has certain guiding significance for the design of the rotor system.The cooling device is designed and simulated by CFD method based on the optimal solution set. Both the inlet boundary conditions of given pressure (1 MPα) and given mass flow rate (0.1 kg/s) numerical calculations were carried out to characterize the cooling performance, for different jet impingement configurations (Hr/din = 0.0125 ∼ 5).Several sets of analyses show the strong effects of the jet-to-target spacing (Hr/din) on the rotor thermal performance at a given diameter (din) of the nozzle. Average temperature (Tc) at the free end of the rotor show that, as jet-to-target distance decreases (0.0125 ≤ Hr/din ≤ 0.33), the heat dissipation efficiency of the cooling device with the given pressure boundary condition tends to decrease, while the conclusion is opposite when the inlet boundary condition is set to the given mass flow rate. And there is an interval for the optimal combination (Hr/din) to promote the cooling efficiency.


2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


Sign in / Sign up

Export Citation Format

Share Document