scholarly journals Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis

2009 ◽  
Vol 125 (7) ◽  
pp. 1575-1586 ◽  
Author(s):  
Étienne Lemieux ◽  
Sébastien Bergeron ◽  
Véronique Durand ◽  
Claude Asselin ◽  
Caroline Saucier ◽  
...  
2017 ◽  
Vol 2 (4) ◽  
pp. 211-218
Author(s):  
Martin Leutenegger ◽  
Ramona Bruckner ◽  
Marianne R. Spalinger ◽  
Silvia Lang ◽  
Gerhard Rogler ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1104 ◽  
Author(s):  
Dolores Ortiz-Masiá ◽  
Laura Gisbert-Ferrándiz ◽  
Cristina Bauset ◽  
Sandra Coll ◽  
Céline Mamie ◽  
...  

The pathogenesis of Crohn’s disease-associated fibrostenosis and fistulas imply the epithelial-to-mesenchymal transition (EMT) process. As succinate and its receptor (SUCNR1) are involved in intestinal inflammation and fibrosis, we investigated their relevance in EMT and Crohn’s disease (CD) fistulas. Succinate levels and SUCNR1-expression were analyzed in intestinal resections from non-Inflammatory Bowel Disease (non-IBD) subjects and CD patients with stenosing-B2 or penetrating-B3 complications and in a murine heterotopic-transplant model of intestinal fibrosis. EMT, as increased expression of Snail1, Snail2 and vimentin and reduction in E-cadherin, was analyzed in tissues and succinate-treated HT29 cells. The role played by SUCNR1 was studied by silencing its gene. Succinate levels and SUCNR1 expression are increased in B3-CD patients and correlate with EMT markers. SUCNR1 is detected in transitional cells lining the fistula tract and in surrounding mesenchymal cells. Grafts from wild type (WT) mice present increased succinate levels, SUCNR1 up-regulation and EMT activation, effects not observed in SUCNR1−/− tissues. SUCNR1 activation induces the expression of Wnt ligands, activates WNT signaling and induces a WNT-mediated EMT in HT29 cells. In conclusion, succinate and its receptor are up-regulated around CD-fistulas and activate Wnt signaling and EMT in intestinal epithelial cells. These results point to SUCNR1 as a novel pharmacological target for fistula prevention.


2004 ◽  
Vol 164 (6) ◽  
pp. 797-802 ◽  
Author(s):  
Nicole R. Murray ◽  
Lee Jamieson ◽  
Wangsheng Yu ◽  
Jie Zhang ◽  
Yesim Gökmen-Polar ◽  
...  

Protein kinase C ι (PKCι) has been implicated in Ras signaling, however, a role for PKCι in oncogenic Ras-mediated transformation has not been established. Here, we show that PKCι is a critical downstream effector of oncogenic Ras in the colonic epithelium. Transgenic mice expressing constitutively active PKCι in the colon are highly susceptible to carcinogen-induced colon carcinogenesis, whereas mice expressing kinase-deficient PKCι (kdPKCι) are resistant to both carcinogen- and oncogenic Ras-mediated carcinogenesis. Expression of kdPKCι in Ras-transformed rat intestinal epithelial cells blocks oncogenic Ras-mediated activation of Rac1, cellular invasion, and anchorage-independent growth. Constitutively active Rac1 (RacV12) restores invasiveness and anchorage-independent growth in Ras-transformed rat intestinal epithelial cells expressing kdPKCι. Our data demonstrate that PKCι is required for oncogenic Ras- and carcinogen-mediated colon carcinogenesis in vivo and define a procarcinogenic signaling axis consisting of Ras, PKCι, and Rac1.


Author(s):  
Baoyu Chen ◽  
Wenhui Dong ◽  
Tinghui Shao ◽  
Xiulian Miao ◽  
Yan Guo ◽  
...  

Intestinal fibrosis is one of the common pathophysiological processes in inflammatory bowel diseases (IBDs). Previously it has been demonstrated that epithelial-mesenchymal transition (EMT) can contribute to the development of intestinal fibrosis. Here we report that conditional ablation of SIRT1, a class III lysine deacetylase, in intestinal epithelial cells exacerbated 2, 4, 6-trinitro-benzene sulfonic acid (TNBS) induced intestinal fibrosis in mice. SIRT1 activity, but not SIRT1 expression, was down-regulated during EMT likely due to up-regulation of its inhibitor deleted in breast cancer 1 (DBC1). TGF-β augmented the recruitment of KDM4A, a histone H3K9 demethylase, to the DBC1 promoter in cultured intestinal epithelial cells (IEC-6) leading to DBC1 trans-activation. KDM4A depletion or inhibition abrogated DBC1 induction by TGF-β and normalized SIRT1 activity. In addition, KDM4A deficiency attenuated TGF-β induced EMT in IEC-6 cells. In conclusion, our data identify a KDM4-DBC1-SIRT1 pathway that regulates EMT to contribute to intestinal fibrosis.


Sign in / Sign up

Export Citation Format

Share Document