Single variable differential calculus under q ‐rung orthopair fuzzy environment: Limit, derivative, chain rules, and its application

2019 ◽  
Vol 34 (7) ◽  
pp. 1387-1415 ◽  
Author(s):  
Jianmei Ye ◽  
Zhenghai Ai ◽  
Zeshui Xu
2020 ◽  
Vol 54 (6) ◽  
pp. 1775-1791
Author(s):  
Nazila Aghayi ◽  
Samira Salehpour

The concept of cost efficiency has become tremendously popular in data envelopment analysis (DEA) as it serves to assess a decision-making unit (DMU) in terms of producing minimum-cost outputs. A large variety of precise and imprecise models have been put forward to measure cost efficiency for the DMUs which have a role in constructing the production possibility set; yet, there’s not an extensive literature on the cost efficiency (CE) measurement for sample DMUs (SDMUs). In an effort to remedy the shortcomings of current models, herein is introduced a generalized cost efficiency model that is capable of operating in a fuzzy environment-involving different types of fuzzy numbers-while preserving the Farrell’s decomposition of cost efficiency. Moreover, to the best of our knowledge, the present paper is the first to measure cost efficiency by using vectors. Ultimately, a useful example is provided to confirm the applicability of the proposed methods.


2007 ◽  
Vol 12 (02) ◽  
Author(s):  
A. Terceño Gómez ◽  
A. Fernández Bariviera ◽  
J. M. Brotons Martí­nez

Author(s):  
Sandip Moi ◽  
Suvankar Biswas ◽  
Smita Pal(Sarkar)

AbstractIn this article, some properties of neutrosophic derivative and neutrosophic numbers have been presented. This properties have been used to develop the neutrosophic differential calculus. By considering different types of first- and second-order derivatives, different kind of systems of derivatives have been developed. This is the first time where a second-order neutrosophic boundary-value problem has been introduced with different types of first- and second-order derivatives. Some numerical examples have been examined to explain different systems of neutrosophic differential equation.


Sign in / Sign up

Export Citation Format

Share Document