scholarly journals Polyprotein processing in African swine fever virus: a novel gene expression strategy for a DNA virus.

1993 ◽  
Vol 12 (7) ◽  
pp. 2977-2987 ◽  
Author(s):  
C. Simón-Mateo ◽  
G. Andrés ◽  
E. Viñuela
2016 ◽  
Vol 91 (4) ◽  
Author(s):  
Germán Andrés

ABSTRACT African swine fever virus (ASFV) is a large, multienveloped DNA virus composed of a genome-containing core successively wrapped by an inner lipid envelope, an icosahedral protein capsid, and an outer lipid envelope. In keeping with this structural complexity, recent studies have revealed an intricate entry program. This Gem highlights how ASFV uses two alternative pathways, macropinocytosis and clathrin-mediated endocytosis, to enter into the host macrophage and how the endocytosed particles undergo a stepwise, low pH-driven disassembly leading to inner envelope fusion and core delivery in the cytoplasm.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Suresh Banjara ◽  
Sofia Caria ◽  
Linda K. Dixon ◽  
Mark G. Hinds ◽  
Marc Kvansakul

ABSTRACT Programmed cell death is a tightly controlled process critical for the removal of damaged or infected cells. Pro- and antiapoptotic proteins of the Bcl-2 family are pivotal mediators of this process. African swine fever virus (ASFV) is a large DNA virus, the only member of the Asfarviridae family, and harbors A179L, a putative Bcl-2 like protein. A179L has been shown to bind to several proapoptotic Bcl-2 proteins; however, the hierarchy of binding and the structural basis for apoptosis inhibition are currently not understood. We systematically evaluated the ability of A179L to bind proapoptotic Bcl-2 family members and show that A179L is the first antiapoptotic Bcl-2 protein to bind to all major death-inducing mammalian Bcl-2 proteins. We then defined the structural basis for apoptosis inhibition of A179L by determining the crystal structures of A179L bound to both Bid and Bax BH3 motifs. Our findings provide a mechanistic understanding for the potent antiapoptotic activity of A179L by identifying it as the first panprodeath Bcl-2 binder and serve as a platform for more-detailed investigations into the role of A179L during ASFV infection. IMPORTANCE Numerous viruses have acquired strategies to subvert apoptosis by encoding proteins capable of sequestering proapoptotic host proteins. African swine fever virus (ASFV), a large DNA virus and the only member of the Asfarviridae family, encodes the protein A179L, which functions to prevent apoptosis. We show that A179L is unusual among antiapoptotic Bcl-2 proteins in being able to physically bind to all core death-inducing mammalian Bcl-2 proteins. Currently, little is known regarding the molecular interactions between A179L and the proapoptotic Bcl-2 members. Using the crystal structures of A179L bound to two of the identified proapoptotic Bcl-2 proteins, Bid and Bax, we now provide a three-dimensional (3D) view of how A179L sequesters host proapoptotic proteins, which is crucial for subverting premature host cell apoptosis.


2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Guobang Li ◽  
Xiaoxia Liu ◽  
Mengyuan Yang ◽  
Guangshun Zhang ◽  
Zhengyang Wang ◽  
...  

ABSTRACT African swine fever (ASF) is a highly contagious hemorrhagic viral disease of domestic and wild pigs that is responsible for serious economic and production losses. It is caused by the African swine fever virus (ASFV), a large and complex icosahedral DNA virus of the Asfarviridae family. Currently, there is no effective treatment or approved vaccine against the ASFV. pS273R, a specific SUMO-1 cysteine protease, catalyzes the maturation of the pp220 and pp62 polyprotein precursors into core-shell proteins. Here, we present the crystal structure of the ASFV pS273R protease at a resolution of 2.3 Å. The overall structure of the pS273R protease is represented by two domains named the “core domain” and the N-terminal “arm domain.” The “arm domain” contains the residues from M1 to N83, and the “core domain” contains the residues from N84 to A273. A structure analysis reveals that the “core domain” shares a high degree of structural similarity with chlamydial deubiquitinating enzyme, sentrin-specific protease, and adenovirus protease, while the “arm domain” is unique to ASFV. Further, experiments indicated that the “arm domain” plays an important role in maintaining the enzyme activity of ASFV pS273R. Moreover, based on the structural information of pS273R, we designed and synthesized several peptidomimetic aldehyde compounds at a submolar 50% inhibitory concentration, which paves the way for the design of inhibitors to target this severe pathogen. IMPORTANCE African swine fever virus, a large and complex icosahedral DNA virus, causes a deadly infection in domestic pigs. In addition to Africa and Europe, countries in Asia, including China, Vietnam, and Mongolia, were negatively affected by the hazards posed by ASFV outbreaks in 2018 and 2019, at which time more than 30 million pigs were culled. Until now, there has been no vaccine for protection against ASFV infection or effective treatments to cure ASF. Here, we solved the high-resolution crystal structure of the ASFV pS273R protease. The pS273R protease has a two-domain structure that distinguishes it from other members of the SUMO protease family, while the unique “arm domain” has been proven to be essential for its hydrolytic activity. Moreover, the peptidomimetic aldehyde compounds designed to target the substrate binding pocket exert prominent inhibitory effects and can thus be used in a potential lead for anti-ASFV drug development.


2008 ◽  
Vol 83 (2) ◽  
pp. 969-980 ◽  
Author(s):  
Aitor G. Granja ◽  
Elena G. Sánchez ◽  
Prado Sabina ◽  
Manuel Fresno ◽  
Yolanda Revilla

ABSTRACT During a viral infection, reprogramming of the host cell gene expression pattern is required to establish an adequate antiviral response. The transcriptional coactivators p300 and CREB binding protein (CBP) play a central role in this regulation by promoting the assembly of transcription enhancer complexes to specific promoters of immune and proinflammatory genes. Here we show that the protein A238L encoded by African swine fever virus counteracts the host cell inflammatory response through the control of p300 transactivation during the viral infection. We demonstrate that A238L inhibits the expression of the inflammatory regulators cyclooxygenase-2 (COX-2) and tumor necrosis factor alpha (TNF-α) by preventing the recruitment of p300 to the enhanceosomes formed on their promoters. Furthermore, we report that A238L inhibits p300 activity during the viral infection and that its amino-terminal transactivation domain is essential in the A238L-mediated inhibition of the inflammatory response. Importantly, we found that the residue serine 384 of p300 is required for the viral protein to accomplish its inhibitory function and that ectopically expressed PKC-θ completely reverts this inhibition, thus indicating that this signaling pathway is disrupted by A238L during the viral infection. Furthermore, we show here that A238L does not affect PKC-θ enzymatic activity, but the molecular mechanism of this viral inhibition relies on the lack of interaction between PKC-θ and p300. These findings shed new light on how viruses alter the host cell antiviral gene expression pattern through the blockade of the p300 activity, which represents a new and sophisticated viral mechanism to evade the inflammatory and immune defense responses.


2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Julien Andreani ◽  
Jacques Yaacoub Bou Khalil ◽  
Madhumati Sevvana ◽  
Samia Benamar ◽  
Fabrizio Di Pinto ◽  
...  

ABSTRACT African swine fever virus, a double-stranded DNA virus that infects pigs, is the only known member of the Asfarviridae family. Nevertheless, during our isolation and sequencing of the complete genome of faustovirus, followed by the description of kaumoebavirus, carried out over the past 2 years, we observed the emergence of previously unknown related viruses within this group of viruses. Here we describe the isolation of pacmanvirus, a fourth member in this group, which is capable of infecting Acanthamoeba castellanii. Pacmanvirus A23 has a linear compact genome of 395,405 bp, with a 33.62% G+C content. The pacmanvirus genome harbors 465 genes, with a high coding density. An analysis of reciprocal best hits shows that 31 genes are conserved between African swine fever virus, pacmanvirus, faustovirus, and kaumoebavirus. Moreover, the major capsid protein locus of pacmanvirus appears to be different from those of kaumoebavirus and faustovirus. Overall, comparative and genomic analyses reveal the emergence of a new group or cluster of viruses encompassing African swine fever virus, faustovirus, pacmanvirus, and kaumoebavirus. IMPORTANCE Pacmanvirus is a newly discovered icosahedral double-stranded DNA virus that was isolated from an environmental sample by amoeba coculture. We describe herein its structure and replicative cycle, along with genomic analysis and genomic comparisons with previously known viruses. This virus represents the third virus, after faustovirus and kaumoebavirus, that is most closely related to classical representatives of the Asfarviridae family. These results highlight the emergence of previously unknown double-stranded DNA viruses which delineate and extend the diversity of a group around the asfarvirus members.


2009 ◽  
Vol 84 (1) ◽  
pp. 176-187 ◽  
Author(s):  
Cristina Suárez ◽  
María L. Salas ◽  
Javier M. Rodríguez

ABSTRACT One of the most characteristic features of African swine fever virus gene expression is its use of two polyproteins, pp220 and pp62, to produce several structural proteins that account for approximately 32% of the total protein virion mass. Equimolecular amounts of these proteins are the major components of the core shell, a thick protein layer that lies beneath the inner envelope, surrounding the viral nucleoid. Polyprotein pp220, which is located immediately underneath the internal envelope, is essential for the encapsidation of the core of the viral particle. In its absence, the infection produces essentially coreless particles. In this study we analyzed, by means of an IPTG (isopropyl-β-d-thiogalactopyranoside)-inducible virus, the role of polyprotein pp62 in virus assembly. Polyprotein pp62 is indispensable for viral replication. The repression of polyprotein pp62 expression does not alter late gene expression or the proteolytic processing of the polyprotein pp220. However, it has a profound impact on the subcellular localization of polyprotein pp220. Electron microscopy studies revealed that polyprotein pp62 is necessary for the correct assembly and maturation of the core of the viral particle. Its repression leads to the appearance of a significant fraction of empty particles, to an increase in the number of immature-like particles, and to the accumulation of defective particles. Immunoelectron microscopy analysis showed a clear correlation between the amount of polyprotein pp62, the quantity of polyprotein pp220, and the state of development of the core, suggesting that the complete absence of polyprotein pp62 during morphogenesis would produce a homogenous population of empty particles.


Author(s):  
Alí Alejo ◽  
Germán Andrés ◽  
Marina del Rosal ◽  
María L. Salas

Sign in / Sign up

Export Citation Format

Share Document