scholarly journals Selection of differently temporally regulated African swine fever virus promoters with variable expression activities and their application for transient and recombinant virus mediated gene expression

Virology ◽  
2017 ◽  
Vol 508 ◽  
pp. 70-80 ◽  
Author(s):  
Raquel S. Portugal ◽  
Anja Bauer ◽  
Guenther M. Keil
2008 ◽  
Vol 83 (2) ◽  
pp. 969-980 ◽  
Author(s):  
Aitor G. Granja ◽  
Elena G. Sánchez ◽  
Prado Sabina ◽  
Manuel Fresno ◽  
Yolanda Revilla

ABSTRACT During a viral infection, reprogramming of the host cell gene expression pattern is required to establish an adequate antiviral response. The transcriptional coactivators p300 and CREB binding protein (CBP) play a central role in this regulation by promoting the assembly of transcription enhancer complexes to specific promoters of immune and proinflammatory genes. Here we show that the protein A238L encoded by African swine fever virus counteracts the host cell inflammatory response through the control of p300 transactivation during the viral infection. We demonstrate that A238L inhibits the expression of the inflammatory regulators cyclooxygenase-2 (COX-2) and tumor necrosis factor alpha (TNF-α) by preventing the recruitment of p300 to the enhanceosomes formed on their promoters. Furthermore, we report that A238L inhibits p300 activity during the viral infection and that its amino-terminal transactivation domain is essential in the A238L-mediated inhibition of the inflammatory response. Importantly, we found that the residue serine 384 of p300 is required for the viral protein to accomplish its inhibitory function and that ectopically expressed PKC-θ completely reverts this inhibition, thus indicating that this signaling pathway is disrupted by A238L during the viral infection. Furthermore, we show here that A238L does not affect PKC-θ enzymatic activity, but the molecular mechanism of this viral inhibition relies on the lack of interaction between PKC-θ and p300. These findings shed new light on how viruses alter the host cell antiviral gene expression pattern through the blockade of the p300 activity, which represents a new and sophisticated viral mechanism to evade the inflammatory and immune defense responses.


2015 ◽  
Vol 89 (11) ◽  
pp. 6048-6056 ◽  
Author(s):  
Vivian O'Donnell ◽  
Lauren G. Holinka ◽  
Douglas P. Gladue ◽  
Brenton Sanford ◽  
Peter W. Krug ◽  
...  

ABSTRACTAfrican swine fever virus (ASFV) is the etiological agent of a contagious and often lethal disease of domestic pigs that has significant economic consequences for the swine industry. The control of African swine fever (ASF) has been hampered by the unavailability of vaccines. Experimental vaccines have been developed using genetically modified live attenuated ASFVs where viral genes involved in virus virulence were removed from the genome. Multigene family 360 (MGF360) and MGF505 represent a group of genes sharing partial sequence and structural identities that have been connected with ASFV host range specificity, blocking of the host innate response, and virus virulence. Here we report the construction of a recombinant virus (ASFV-G-ΔMGF) derived from the highly virulent ASFV Georgia 2007 isolate (ASFV-G) by specifically deleting six genes belonging to MGF360 or MGF505: MGF505-1R, MGF360-12L, MGF360-13L, MGF360-14L, MGF505-2R, and MGF505-3R. ASFV-G-ΔMGF replicates as efficiently in primary swine macrophage cell cultures as the parental virus.In vivo, ASFV-G-ΔMGF is completely attenuated in swine, since pigs inoculated intramuscularly (i.m.) with either 102or 10450% hemadsorbing doses (HAD50) remained healthy, without signs of the disease. Importantly, when these animals were subsequently exposed to highly virulent parental ASFV-G, no signs of the disease were observed, although a proportion of these animals harbored the challenge virus. This is the first report demonstrating the role of MGF genes acting as independent determinants of ASFV virulence. Additionally, ASFV-G-ΔMGF is the first experimental vaccine reported to induce protection in pigs challenged with highly virulent and epidemiologically relevant ASFV-G.IMPORTANCEThe main problem for controlling ASF is the lack of vaccines. Studies focusing on understanding ASFV virulence led to the production of genetically modified recombinant viruses that, while attenuated, are able to confer protection in pigs challenged with homologous viruses. Here we have produced an attenuated recombinant ASFV derived from highly virulent ASFV strain Georgia (ASFV-G) lacking only six of the multigene family 360 (MGF360) and MGF505 genes (ASFV-G-ΔMGF). It is demonstrated, by first time, that deleting specific MGF genes alone can completely attenuate a highly virulent field ASFV isolate. Recombinant virus ASFV-G-ΔMGF effectively confers protection in pigs against challenge with ASFV-G when delivered once via the intramuscular (i.m.) route. The protection against ASFV-G is highly effective by 28 days postvaccination. This is the first report of an experimental vaccine that induces solid protection against virulent ASFV-G.


2006 ◽  
Vol 80 (24) ◽  
pp. 12260-12270 ◽  
Author(s):  
Carolina Epifano ◽  
Jacomine Krijnse-Locker ◽  
María L. Salas ◽  
Javier M. Rodríguez ◽  
José Salas

ABSTRACT African swine fever virus (ASFV) protein pB602L has been described as a molecular chaperone for the correct folding of the major capsid protein p72. We have studied the function of protein pB602L during the viral assembly process by using a recombinant ASFV, vB602Li, which inducibly expresses the gene coding for this protein. We show that protein pB602L is a late nonstructural protein, which, in contrast with protein p72, is excluded from the viral factory. Repression of protein pB602L synthesis inhibits the proteolytic processing of the two viral polyproteins pp220 and pp62 and leads to a decrease in the levels of protein p72 and a delocalization of the capsid protein pE120R. As shown by electron microscopy analysis of cells infected with the recombinant virus vB602Li, the viral assembly process is severely altered in the absence of protein pB602L, with the generation of aberrant “zipper-like” structures instead of icosahedral virus particles. These “zipper-like” structures are similar to those found in cells infected under restrictive conditions with the recombinant virus vA72 inducibly expressing protein p72. Immunoelectron microscopy studies show that the abnormal forms generated in the absence of protein pB602L contain the inner envelope protein p17 and the two polyproteins but lack the capsid proteins p72 and pE120R. These findings indicate that protein pB602L is essential for the assembly of the icosahedral capsid of the virus particle.


2009 ◽  
Vol 84 (1) ◽  
pp. 176-187 ◽  
Author(s):  
Cristina Suárez ◽  
María L. Salas ◽  
Javier M. Rodríguez

ABSTRACT One of the most characteristic features of African swine fever virus gene expression is its use of two polyproteins, pp220 and pp62, to produce several structural proteins that account for approximately 32% of the total protein virion mass. Equimolecular amounts of these proteins are the major components of the core shell, a thick protein layer that lies beneath the inner envelope, surrounding the viral nucleoid. Polyprotein pp220, which is located immediately underneath the internal envelope, is essential for the encapsidation of the core of the viral particle. In its absence, the infection produces essentially coreless particles. In this study we analyzed, by means of an IPTG (isopropyl-β-d-thiogalactopyranoside)-inducible virus, the role of polyprotein pp62 in virus assembly. Polyprotein pp62 is indispensable for viral replication. The repression of polyprotein pp62 expression does not alter late gene expression or the proteolytic processing of the polyprotein pp220. However, it has a profound impact on the subcellular localization of polyprotein pp220. Electron microscopy studies revealed that polyprotein pp62 is necessary for the correct assembly and maturation of the core of the viral particle. Its repression leads to the appearance of a significant fraction of empty particles, to an increase in the number of immature-like particles, and to the accumulation of defective particles. Immunoelectron microscopy analysis showed a clear correlation between the amount of polyprotein pp62, the quantity of polyprotein pp220, and the state of development of the core, suggesting that the complete absence of polyprotein pp62 during morphogenesis would produce a homogenous population of empty particles.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Zhihua Feng ◽  
Jianghua Chen ◽  
Wangwang Liang ◽  
Wenzhi Chen ◽  
Zhaolong Li ◽  
...  

Abstract Background African swine fever (ASF) leads to high mortality in domestic pigs and wild boar and is caused by the African swine fever virus (ASFV). Currently, no vaccine is commercially available for prevention, and the epidemic is still spreading. Here, we constructed a recombinant pseudorabies virus (PRV) (PRV-ΔgE/ΔgI/ΔTK-(CD2v)) that expresses the CD2v protein of ASFV and evaluated its effectiveness and safety as a vaccine candidate in mice. Methods A homologous recombination fragment containing ASFV CD2v was synthesized and co-transfected into HEK 293 T cells, a knockout vector targeting the PRV TK gene. The transfected cells were infected with PRV-ΔgE/ΔgI, and the recombinant strain (PRV-ΔgE/ΔgI/ΔTK-(CD2v)) was obtained by plaque purification in Vero cells. The expression of ASFV CD2v in the recombinant virus was confirmed by sequencing, Western blotting, and immunofluorescence analysis, and the genetic stability was tested in Vero cells over 20 passages. The virulence, immunogenicity and protective ability of the recombinant virus were further tested in a mouse model. Results The PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain is stable in Vero cells, and the processing of CD2v does not depend on ASFV infection. The vaccination of PRV-ΔgE/ΔgI/ΔTK-(CD2v) causes neither pruritus, not a systemic infection and inflammation (with the high expression of interleukin-6 (IL6)). Besides, the virus vaccination can produce anti-CD2v specific antibody and activate a specific cellular immune response, and 100% protect mice from the challenge of the virulent strain (PRV-Fa). The detoxification occurs much earlier upon the recombinant virus vaccination and the amount of detoxification is much lower as well. Conclusions The PRV-ΔgE/ΔgI/ΔTK-(CD2v) recombinant strain has strong immunogenicity, is safe and effective, and maybe a potential vaccine candidate for the prevention of ASF and Pseudorabies.


Sign in / Sign up

Export Citation Format

Share Document