scholarly journals African Swine Fever Virus Blocks the Host Cell Antiviral Inflammatory Response through a Direct Inhibition of PKC-θ-Mediated p300 Transactivation

2008 ◽  
Vol 83 (2) ◽  
pp. 969-980 ◽  
Author(s):  
Aitor G. Granja ◽  
Elena G. Sánchez ◽  
Prado Sabina ◽  
Manuel Fresno ◽  
Yolanda Revilla

ABSTRACT During a viral infection, reprogramming of the host cell gene expression pattern is required to establish an adequate antiviral response. The transcriptional coactivators p300 and CREB binding protein (CBP) play a central role in this regulation by promoting the assembly of transcription enhancer complexes to specific promoters of immune and proinflammatory genes. Here we show that the protein A238L encoded by African swine fever virus counteracts the host cell inflammatory response through the control of p300 transactivation during the viral infection. We demonstrate that A238L inhibits the expression of the inflammatory regulators cyclooxygenase-2 (COX-2) and tumor necrosis factor alpha (TNF-α) by preventing the recruitment of p300 to the enhanceosomes formed on their promoters. Furthermore, we report that A238L inhibits p300 activity during the viral infection and that its amino-terminal transactivation domain is essential in the A238L-mediated inhibition of the inflammatory response. Importantly, we found that the residue serine 384 of p300 is required for the viral protein to accomplish its inhibitory function and that ectopically expressed PKC-θ completely reverts this inhibition, thus indicating that this signaling pathway is disrupted by A238L during the viral infection. Furthermore, we show here that A238L does not affect PKC-θ enzymatic activity, but the molecular mechanism of this viral inhibition relies on the lack of interaction between PKC-θ and p300. These findings shed new light on how viruses alter the host cell antiviral gene expression pattern through the blockade of the p300 activity, which represents a new and sophisticated viral mechanism to evade the inflammatory and immune defense responses.

1998 ◽  
Vol 72 (4) ◽  
pp. 2881-2889 ◽  
Author(s):  
M. V. Borca ◽  
C. Carrillo ◽  
L. Zsak ◽  
W. W. Laegreid ◽  
G. F. Kutish ◽  
...  

ABSTRACT An African swine fever virus (ASFV) gene with similarity to the T-lymphocyte surface antigen CD2 has been found in the pathogenic African isolate Malawi Lil-20/1 (open reading frame [ORF] 8-DR) and a cell culture-adapted European virus, BA71V (ORF EP402R) and has been shown to be responsible for the hemadsorption phenomenon observed for ASFV-infected cells. The structural and functional similarities of the ASFV gene product to CD2, a cellular protein involved in cell-cell adhesion and T-cell-mediated immune responses, suggested a possible role for this gene in tissue tropism and/or immune evasion in the swine host. In this study, we constructed an ASFV 8-DR gene deletion mutant (Δ8-DR) and its revertant (8-DR.R) from the Malawi Lil-20/1 isolate to examine gene function in vivo. In vitro, Δ8-DR, 8-DR.R, and the parental virus exhibited indistinguishable growth characteristics on primary porcine macrophage cell cultures. In vivo,8-DR had no obvious effect on viral virulence in domestic pigs; disease onset, disease course, and mortality were similar for the mutant Δ8-DR, its revertant 8-DR.R, and the parental virus. Altered viral infection was, however, observed for pigs infected with Δ8-DR. A delay in spread to and/or replication of Δ8-DR in the draining lymph node, a delay in generalization of infection, and a 100- to 1,000-fold reduction in virus titers in lymphoid tissue and bone marrow were observed. Onset of viremia for Δ8-DR-infected animals was significantly delayed (by 2 to 5 days), and mean viremia titers were reduced approximately 10,000-fold at 5 days postinfection and 30- to 100-fold at later times; moreover, unlike in 8-DR.R-infected animals, the viremia was no longer predominantly erythrocyte associated but rather was equally distributed among erythrocyte, leukocyte, and plasma fractions. Mitogen-dependent lymphocyte proliferation of swine peripheral blood mononuclear cells in vitro was reduced by 90 to 95% following infection with 8-DR.R but remained unaltered following infection with Δ8-DR, suggesting that 8-DR has immunosuppressive activity in vitro. Together, these results suggest an immunosuppressive role for 8-DR in the swine host which facilitates early events in viral infection. This may be of most significance for ASFV infection of its highly adapted natural host, the warthog.


2004 ◽  
Vol 78 (4) ◽  
pp. 1858-1864 ◽  
Author(s):  
C. L. Afonso ◽  
M. E. Piccone ◽  
K. M. Zaffuto ◽  
J. Neilan ◽  
G. F. Kutish ◽  
...  

ABSTRACT African swine fever virus (ASFV) multigene family 360 and 530 (MGF360/530) genes affect viral growth in macrophage cell cultures and virulence in pigs (L. Zsak, Z. Lu, T. G. Burrage, J. G. Neilan, G. F. Kutish, D. M. Moore, and D. L. Rock, J. Virol. 75:3066-3076, 2001). The mechanism by which these novel genes affect virus-host interactions is unknown. To define MGF360/530 gene function, we compared macrophage transcriptional responses following infection with parental ASFV (Pr4) and an MGF360/530 deletion mutant (Pr4Δ35). A swine cDNA microarray containing 7,712 macrophage cDNA clones was used to compare the transcriptional profiles of swine macrophages infected with Pr4 and Pr4Δ35 at 3 and 6 h postinfection (hpi). While at 3 hpi most (7,564) of the genes had similar expression levels in cells infected with either virus, 38 genes had significantly increased (>2.0-fold, P < 0.05) mRNA levels in Pr4Δ35-infected macrophages. Similar up-regulation of these genes was observed at 6 hpi. Viral infection was required for this induced transcriptional response. Most Pr4Δ35 up-regulated genes were part of a type I interferon (IFN) response or were genes that are normally induced by double-stranded RNA and/or viral infection. These included monocyte chemoattractant protein, transmembrane protein 3, tetratricopeptide repeat protein 1, a ubiquitin-like 17-kDa protein, ubiquitin-specific protease ISG43, an RNA helicase DEAD box protein, GTP-binding MX protein, the cytokine IP-10, and the PKR activator PACT. Differential expression of IFN early-response genes in Pr4Δ35 relative to Pr4 was confirmed by Northern blot analysis and real-time PCR. Analysis of IFN-α mRNA and secreted IFN-α levels at 3, 8, and 24 hpi revealed undetectable IFN-α in mock- and Pr4-infected macrophages but significant IFN-α levels at 24 hpi in Pr4Δ35-infected macrophages. The absence of IFN-α in Pr4-infected macrophages suggests that MGF360/530 genes either directly or indirectly suppress a type I IFN response. An inability to suppress host type I IFN responses may account for the growth defect of Pr4Δ35 in macrophages and its attenuation in swine.


2009 ◽  
Vol 84 (1) ◽  
pp. 176-187 ◽  
Author(s):  
Cristina Suárez ◽  
María L. Salas ◽  
Javier M. Rodríguez

ABSTRACT One of the most characteristic features of African swine fever virus gene expression is its use of two polyproteins, pp220 and pp62, to produce several structural proteins that account for approximately 32% of the total protein virion mass. Equimolecular amounts of these proteins are the major components of the core shell, a thick protein layer that lies beneath the inner envelope, surrounding the viral nucleoid. Polyprotein pp220, which is located immediately underneath the internal envelope, is essential for the encapsidation of the core of the viral particle. In its absence, the infection produces essentially coreless particles. In this study we analyzed, by means of an IPTG (isopropyl-β-d-thiogalactopyranoside)-inducible virus, the role of polyprotein pp62 in virus assembly. Polyprotein pp62 is indispensable for viral replication. The repression of polyprotein pp62 expression does not alter late gene expression or the proteolytic processing of the polyprotein pp220. However, it has a profound impact on the subcellular localization of polyprotein pp220. Electron microscopy studies revealed that polyprotein pp62 is necessary for the correct assembly and maturation of the core of the viral particle. Its repression leads to the appearance of a significant fraction of empty particles, to an increase in the number of immature-like particles, and to the accumulation of defective particles. Immunoelectron microscopy analysis showed a clear correlation between the amount of polyprotein pp62, the quantity of polyprotein pp220, and the state of development of the core, suggesting that the complete absence of polyprotein pp62 during morphogenesis would produce a homogenous population of empty particles.


2015 ◽  
Vol 209 ◽  
pp. 118-127 ◽  
Author(s):  
Raquel Muñoz-Moreno ◽  
Inmaculada Galindo ◽  
Miguel Ángel Cuesta-Geijo ◽  
Lucía Barrado-Gil ◽  
Covadonga Alonso

Sign in / Sign up

Export Citation Format

Share Document