Acoustic resolution photoacoustic microscopy based on microelectromechanical systems scanner

2019 ◽  
Vol 13 (2) ◽  
Author(s):  
Mohesh Moothanchery ◽  
Kapil Dev ◽  
Ghayathri Balasundaram ◽  
Renzhe Bi ◽  
Malini Olivo
2012 ◽  
Vol 37 (20) ◽  
pp. 4263 ◽  
Author(s):  
Sung-Liang Chen ◽  
Zhixing Xie ◽  
Tao Ling ◽  
L. Jay Guo ◽  
Xunbin Wei ◽  
...  

1996 ◽  
Vol 444 ◽  
Author(s):  
Hyeon-Seag Kim ◽  
D. L. Polla ◽  
S. A. Campbell

AbstractThe electrical reliability properties of PZT (54/46) thin films have been measured for the purpose of integrating this material with silicon-based microelectromechanical systems. Ferroelectric thin films of PZT were prepared by metal organic decomposition. The charge trapping and degradation properties of these thin films were studied through device characteristics such as hysteresis loop, leakage current, fatigue, dielectric constant, capacitancevoltage, and loss factor measurements. Several unique experimental results have been found. Different degradation processes were verified through fatigue (bipolar stress), low and high charge injection (unipolar stress), and high field stressing (unipolar stress).


2006 ◽  
Vol 4 ◽  
pp. 288-305
Author(s):  
A.B. Migranov

The article deals with the issues related to the construction of microelectromechanical systems (MEMS), and the problems arising from their manufacture. Particular attention is paid to micromechanical parts of robot, which were developed by methods of semi-simulation using the virtual environment for designing, testing and debugging MEMS.


2000 ◽  
Vol 19 (4) ◽  
pp. 268-277 ◽  
Author(s):  
CHARLES HAUTAMAKI ◽  
SHAYNE ZURN ◽  
SUSAN C. MANTELL ◽  
DENNIS L. POLLA

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yanfeng Dai ◽  
Xiang Yu ◽  
Jianshuang Wei ◽  
Fanxin Zeng ◽  
Yiran Li ◽  
...  

Abstract Detection of sentinel lymph nodes (SLNs) is critical to guide the treatment of breast cancer. However, distinguishing metastatic SLNs from normal and inflamed lymph nodes (LNs) during surgical resection remains a challenge. Here, we report a CD44 and scavenger receptor class B1 dual-targeting hyaluronic acid nanoparticle (5K-HA-HPPS) loaded with the near-infra-red fluorescent dye DiR-BOA for SLN imaging in breast cancer. The small sized (~40 nm) self-assembled 5K-HA-HPPSs accumulated rapidly in the SLNs after intradermal injection. Compared with normal popliteal LNs (N-LN), there were ~3.2-fold and ~2.4-fold increases in fluorescence intensity in tumour metastatic SLNs (T-MLN) and inflamed LNs (Inf-LN), respectively, 6 h after nanoparticle inoculation. More importantly, photoacoustic microscopy (PAM) of 5K-HA-HPPS showed a significantly distinct distribution in T-MLN compared with N-LN and Inf-LN. Signals were mainly distributed at the centre of T-MLN but at the periphery of N-LN and Inf-LN. The ratio of PA intensity (R) at the centre of the LNs compared with that at the periphery was 5.93 ± 0.75 for T-MLNs of the 5K-HA-HPPS group, which was much higher than that for the Inf-LNs (R = 0.2 ± 0.07) and N-LNs (R = 0.45 ± 0.09). These results suggest that 5K-HA-HPPS injection combined with PAM provides a powerful tool for distinguishing metastatic SLNs from pLNs and inflamed LNs, thus guiding the removal of SLNs during breast cancer surgery.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Anton Melnikov ◽  
Hermann A. G. Schenk ◽  
Jorge M. Monsalve ◽  
Franziska Wall ◽  
Michael Stolz ◽  
...  

AbstractElectrostatic micromechanical actuators have numerous applications in science and technology. In many applications, they are operated in a narrow frequency range close to resonance and at a drive voltage of low variation. Recently, new applications, such as microelectromechanical systems (MEMS) microspeakers (µSpeakers), have emerged that require operation over a wide frequency and dynamic range. Simulating the dynamic performance under such circumstances is still highly cumbersome. State-of-the-art finite element analysis struggles with pull-in instability and does not deliver the necessary information about unstable equilibrium states accordingly. Convincing lumped-parameter models amenable to direct physical interpretation are missing. This inhibits the indispensable in-depth analysis of the dynamic stability of such systems. In this paper, we take a major step towards mending the situation. By combining the finite element method (FEM) with an arc-length solver, we obtain the full bifurcation diagram for electrostatic actuators based on prismatic Euler-Bernoulli beams. A subsequent modal analysis then shows that within very narrow error margins, it is exclusively the lowest Euler-Bernoulli eigenmode that dominates the beam physics over the entire relevant drive voltage range. An experiment directly recording the deflection profile of a MEMS microbeam is performed and confirms the numerical findings with astonishing precision. This enables modeling the system using a single spatial degree of freedom.


Sign in / Sign up

Export Citation Format

Share Document