Porous Collagen-Hydroxyapatite Scaffolds With Mesenchymal Stem Cells for Bone Regeneration

2015 ◽  
Vol 41 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Li Ning ◽  
Hans Malmström ◽  
Yan-Fang Ren

Current bone grafting materials have significant limitations for repairing maxillofacial and dentoalveolar bone deficiencies. An ideal bone tissue-engineering construct is still lacking. The purpose of the present study was first to synthesize and develop a collagen-hydroxyapatite (Col-HA) composite through controlled in situ mineralization on type I collagen fibrils with nanometer-sized apatite crystals, and then evaluate their biologic properties by culturing with mouse and human mesenchymal stem cells (MSCs). We synthesized Col-HA scaffolds with different Col:HA ratios. Mouse C3H10T1/2 MSCs and human periodontal ligament stem cells (hPDSCs) were cultured with scaffolds for cell proliferation and biocompatibility assays. We found that the porous Col-HA composites have good biocompatibility and biomimetic properties. The Col-HA composites with ratios 80:20 and 50:50 composites supported the attachments and proliferations of mouse MSCs and hPDSCs. These findings indicate that Col-HA composite complexes have strong potentials for bone tissue regeneration.

2021 ◽  
Vol 22 (24) ◽  
pp. 13676
Author(s):  
Yuejiao Yang ◽  
Apoorv Kulkarni ◽  
Gian Domenico Soraru ◽  
Joshua M. Pearce ◽  
Antonella Motta

Bone tissue engineering has developed significantly in recent years as there has been increasing demand for bone substitutes due to trauma, cancer, arthritis, and infections. The scaffolds for bone regeneration need to be mechanically stable and have a 3D architecture with interconnected pores. With the advances in additive manufacturing technology, these requirements can be fulfilled by 3D printing scaffolds with controlled geometry and porosity using a low-cost multistep process. The scaffolds, however, must also be bioactive to promote the environment for the cells to regenerate into bone tissue. To determine if a low-cost 3D printing method for bespoke SiOC(N) porous structures can regenerate bone, these structures were tested for osteointegration potential by using human mesenchymal stem cells (hMSCs). This includes checking the general biocompatibilities under the osteogenic differentiation environment (cell proliferation and metabolism). Moreover, cell morphology was observed by confocal microscopy, and gene expressions on typical osteogenic markers at different stages for bone formation were determined by real-time PCR. The results of the study showed the pore size of the scaffolds had a significant impact on differentiation. A certain range of pore size could stimulate osteogenic differentiation, thus promoting bone regrowth and regeneration.


2010 ◽  
Vol 9999A ◽  
pp. NA-NA ◽  
Author(s):  
Kuo-Shu Tsai ◽  
Shou-Yen Kao ◽  
Chien-Yuan Wang ◽  
Yng-Jiin Wang ◽  
Jung-Pan Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qi Xing ◽  
Mojtaba Parvizi ◽  
Manuela Lopera Higuita ◽  
Leigh G. Griffiths

AbstractNative bovine pericardium (BP) exhibits anisotropy of its surface ECM niches, with the serous surface (i.e., parietal pericardium) containing basement membrane components (e.g., Laminin, Col IV) and the fibrous surface (i.e., mediastinal side) being composed primarily of type I collagen (Col I). Native BP surface ECM niche anisotropy is preserved in antigen removed BP (AR-BP) extracellular matrix (ECM) scaffolds. By exploiting sideness (serous or fibrous surface) of AR-BP scaffolds, this study aims to determine the mechanism by which ECM niche influences human mesenchymal stem cells (hMSCs) migration. Human mesenchymal stem cells (hMSC) seeding on serous surface promoted more rapid cell migration than fibrous surface seeding. Gene analysis revealed that expression of integrin α3 and α11 were increased in cells cultured on serous surface compared to those on the fibrous side. Monoclonal antibody blockade of α3β1 (i.e., laminin binding) inhibited early (i.e. ≤ 6 h) hMSC migration following serous seeding, while having no effect on migration of cells on the fibrous side. Blockade of α3β1 resulted in decreased expression of integrin α3 by cells on serous surface. Monoclonal antibody blockade of α11β1 (i.e., Col IV binding) inhibited serous side migration at later time points (i.e., 6–24 h). These results confirmed the role of integrin α3β1 binding to laminin in mediating early rapid hMSCs migration and α11β1 binding to Col IV in mediating later hMSCs migration on the serous side of AR-BP, which has critical implications for rate of cellular monolayer formation and use of AR-BP as blood contacting material for clinical applications.


Author(s):  
Yuejiao Yang ◽  
Apoorv Kulkarni ◽  
Gian Domenico Soraru ◽  
Joshua M Pearce ◽  
Antonella Motta

Bone tissue engineering has developed significantly in recent years as the increasing demand for bone substitutes due to trauma, cancer, arthritis, and infections. The scaffolds for bone regeneration need to be mechanically stable and have a 3D architecture with interconnected pores. With the advances in additive manufacturing technology, these requirements can be fulfilled by 3D printing scaffolds with controlled geometry and porosity using a low-cost multistep process. The scaffolds, however, must also be bioactive to promote the environment for the cells to regenerate into bone tissue. To determine if a low-cost 3D printing method for bespoke SiOC(N) porous structures can regenerate bone these structures were tested for osteointegration potential by using human mesenchymal stem cells (hMSCs). This includes checking the general biocompatibilities under the osteogenic differentiation environment (cell proliferation and metabolism). Moreover, cell morphology was observed by confocal microscopy and gene expressions on typical osteogenic markers at different stages for bone formation were determined by real-time PCR. The results of the study showed the pore size of the scaffolds had a significant impact on differentiation. A certain range of pore size could stimulate osteogenic differentiation, thus promoting bone regrowth and regeneration.


Sign in / Sign up

Export Citation Format

Share Document