scholarly journals The unique calcium chelation property of poly(vinyl phosphonic acid-co-acrylic acid) and effects on osteogenesis in vitro

2017 ◽  
Vol 106 (1) ◽  
pp. 168-179 ◽  
Author(s):  
Qi Guang Wang ◽  
Ian Wimpenny ◽  
Rebecca E. Dey ◽  
Xia Zhong ◽  
Peter J. Youle ◽  
...  
1992 ◽  
Vol 7 (S2) ◽  
pp. S397-S401 ◽  
Author(s):  
Elisabeth H. Burger ◽  
Jenneke Klein-Nulend ◽  
J. Paul Veldhuijzen

2019 ◽  
Vol 20 (20) ◽  
pp. 5126 ◽  
Author(s):  
Caterina Cristallini ◽  
Serena Danti ◽  
Bahareh Azimi ◽  
Veronika Tempesti ◽  
Claudio Ricci ◽  
...  

The objective of this study was the preparation and physico-chemical, mechanical, biological, and functional characterization of a multifunctional coating for an innovative, fully implantable device. The multifunctional coating was designed to have three fundamental properties: adhesion to device, close mechanical resemblance to human soft tissues, and control of the inflammatory response and tissue repair process. This aim was fulfilled by preparing a multilayered coating based on three components: a hydrophilic primer to allow device adhesion, a poly(vinyl alcohol) hydrogel layer to provide good mechanical compliance with the human tissue, and a layer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers. The use of biopolymer fibers offered the potential for a long-term interface able to modulate the release of an anti-inflammatory drug (dexamethasone), thus contrasting acute and chronic inflammation response following device implantation. Two copolymers, poly(vinyl acetate-acrylic acid) and poly(vinyl alcohol-acrylic acid), were synthetized and characterized using thermal analysis (DSC, TGA), Fourier transform infrared spectroscopy (FT-IR chemical imaging), in vitro cell viability, and an adhesion test. The resulting hydrogels were biocompatible, biostable, mechanically compatible with soft tissues, and able to incorporate and release the drug. Finally, the multifunctional coating showed a good adhesion to titanium substrate, no in vitro cytotoxicity, and a prolonged and controlled drug release.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 110
Author(s):  
Muhammad Suhail ◽  
Chih-Wun Fang ◽  
Arshad Khan ◽  
Muhammad Usman Minhas ◽  
Pao-Chu Wu

The purpose of the current investigation was to develop chondroitin sulfate/carbopol-co-poly(acrylic acid) (CS/CBP-co-PAA) hydrogels for controlled delivery of diclofenac sodium (DS). Different concentrations of polymers chondroitin sulfate (CS), carbopol 934 (CBP), and monomer acrylic acid (AA) were cross-linked by ethylene glycol dimethylacrylate (EGDMA) in the presence of ammonium peroxodisulfate (APS) (initiator). The fabricated hydrogels were characterized for further experiments. Characterizations such as Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), Powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR) were conducted to understand the surface morphology, thermodynamic stability, crystallinity of the drug, ingredients, and developed hydrogels. The swelling and drug release studies were conducted at two different pH mediums (pH 1.2 and 7.4), and pH-dependent swelling and drug release was shown due to the presence of functional groups of both polymers and monomers; hence, greater swelling and drug release was observed at the higher pH (pH 7.4). The percent drug release of the developed system and commercially available product cataflam was compared and high controlled release of the drug from the developed system was observed at both low and high pH. The mechanism of drug release from the hydrogels followed Korsmeyer–Peppas model. Conclusively, the current research work demonstrated that the prepared hydrogel could be considered as a suitable candidate for controlled delivery of diclofenac sodium.


Author(s):  
Savitri Katlam ◽  
Yeshwant A. Deshmukh ◽  
Pradeep R. Jadhav

Background: Tetracycline class of antibiotics differ in their pharmacokinetic profile and chelating property. Objective of present study is to assess the effect of oxytetracycline and doxycycline on calcium chelationMethods: For estimation of calcium chelation of Oxytetracycline and Doxycycline, EDTA method (P. Trinder) and calcium binding assay was followed. Different doses of Oxytetracycline (25 mg, 50 mg and 100 mg) and Doxycycline (25 mg, 50 mg and 100 mg) were used in EDTA method and different concentrations of calcium were used in calcium binding assay. The procedure was done according to the standard methodology.Results: The intensity of colour appear to be increased with increase in dose of the Oxytetracycline (25 mg, 50 mg, 100 mg) as the concentration of calcium binding increases. But in Doxycycline intensity of colour is more with 100 mg as compared with 25 mg and 50 mg The UV absorption spectrum of solution of Oxytetracycline (1mM) was changed after the addition of CaCl2 to provide different concentration of Ca2+ (0.1, 0.5 and 1.0 mM).  With minor shift in the absorption coefficient and no shift in wavelength were observed for Doxycycline.Conclusions: The study concludes that oxytetracycline has more calcium chelating property than doxycycline.


1994 ◽  
Vol 34 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Ademola O. Akinmade ◽  
Julian H. Braybrook ◽  
John W. Nicholson

Sign in / Sign up

Export Citation Format

Share Document