Selective laser-melted fully biodegradable scaffold composed of poly(d ,l -lactide) and β-tricalcium phosphate with potential as a biodegradable implant for complex maxillofacial reconstruction: In vitro and in vivo results

2016 ◽  
Vol 105 (5) ◽  
pp. 1216-1231 ◽  
Author(s):  
Ralf Smeets ◽  
Mike Barbeck ◽  
Henning Hanken ◽  
Horst Fischer ◽  
Markus Lindner ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nan Jiang ◽  
Devendra H. Dusane ◽  
Jacob R. Brooks ◽  
Craig P. Delury ◽  
Sean S. Aiken ◽  
...  

AbstractThis study investigated the efficacy of a biphasic synthetic β-tricalcium phosphate/calcium sulfate (β-TCP/CS) bone graft substitute for compatibility with vancomycin (V) in combination with tobramycin (T) or gentamicin (G) evidenced by the duration of potency and the prevention and killing efficacies of P. aeruginosa (PAO1) and S. aureus (SAP231) biofilms in in vitro assays. Antibiotic loaded β-TCP/CS beads were compared with antibiotic loaded beads formed from a well characterized synthetic calcium sulfate (CS) bone void filler. β-TCP/CS antibiotic loaded showed antimicrobial potency against PAO1 in a repeated Kirby-Bauer like zone of inhibition assay for 6 days compared to 8 days for CS. However, both bead types showed potency against SAP231 for 40 days. Both formulations loaded with V + T completely prevented biofilm formation (CFU below detection limits) for the 3 days of the experiment with daily fresh inoculum challenges (P < 0.001). In addition, both antibiotic loaded materials and antibiotic combinations significantly reduced the bioburden of pre-grown biofilms by between 3 and 5 logs (P < 0.001) with V + G performing slightly better against PAO1 than V + T. Our data, combined with previous data on osteogenesis suggest that antibiotic loaded β-TCP/CS may have potential to stimulate osteogenesis through acting as a scaffold as well as simultaneously protecting against biofilm infection. Future in vivo experiments and clinical investigations are warranted to more comprehensively evaluate the use of β-TCP/CS in the management of orthopaedic infections.


2018 ◽  
Vol 16 (3) ◽  
pp. 126-136 ◽  
Author(s):  
Preeti Makkar ◽  
Swapan Kumar Sarkar ◽  
Andrew R. Padalhin ◽  
Byoung-Gi Moon ◽  
Young Seon Lee ◽  
...  

Background: Magnesium (Mg)-based alloys are considered to be promising materials for implant application due to their excellent biocompatibility, biodegradability, and mechanical properties close to bone. However, low corrosion resistance and fast degradation are limiting their application. Mg–Ca alloys have huge potential owing to a similar density to bone, good corrosion resistance, and as Mg is essential for Ca incorporation into bone. The objective of the present work is to determine the in vitro degradation and in vivo performance of binary Mg– xCa alloy ( x = 0.5 or 5.0 wt%) to assess its usability for degradable implant applications. Methods: Microstructural evolutions for Mg– xCa alloys were characterized by optical, SEM, EDX, and XRD. In vitro degradation tests were conducted via immersion test in phosphate buffer saline solution. In vivo performance in terms of interface, biocompatibility, and biodegradability of Mg– xCa alloys was examined by implanting samples into rabbit femoral condyle for 2 and 4 weeks. Results: Microstructural results showed the enhancement in intermetallic Mg2Ca phase with increase in Ca content. Immersion tests revealed that the dissolution rate varies linearly, with Ca content exhibiting more hydrogen gas evolution, increased pH, and higher degradation for Mg–5.0Ca alloy. In vivo studies showed good biocompatibility with enhanced bone formation for Mg–0.5Ca after 4 weeks of implantation compared with Mg–5.0Ca alloy. Higher initial corrosion rate with prolonged inflammation and rapid degradation was noticed in Mg–5.0Ca compared with Mg–0.5Ca alloy. Conclusions: The results suggest that Mg–0.5Ca alloy could be used as a temporary biodegradable implant material for clinical applications owing to its controlled in vivo degradation, reduced inflammation, and high bone-formation capability.


2019 ◽  
Vol 45 (17) ◽  
pp. 22752-22758 ◽  
Author(s):  
Tankut Ates ◽  
Sergey V. Dorozhkin ◽  
Omer Kaygili ◽  
Mustafa Kom ◽  
Ismail Ercan ◽  
...  

Author(s):  
Jean Charles Le Huec ◽  
Antonio Faundez ◽  
Stephane Aunoble ◽  
Rachid Sadikki ◽  
Julien Rigal

2020 ◽  
Vol 58 (8) ◽  
pp. 1681-1693
Author(s):  
Abolfazl Bagherifard ◽  
Hamed Joneidi Yekta ◽  
Hossein Akbari Aghdam ◽  
Mehdi Motififard ◽  
Ehsan Sanatizadeh ◽  
...  

2016 ◽  
Vol 720 ◽  
pp. 90-94
Author(s):  
Masanobu Kamitakahara ◽  
Takashi Shirato ◽  
Taishi Yokoi ◽  
Hideaki Matsubara ◽  
Yasuaki Shibata ◽  
...  

Silicate-containing alpha-tricalcium phosphate (α-TCP) ceramics are expected to be useful scaffolds for bone regeneration because α-TCP shows high biodegradability and silicate ions are expected to promote the bone formation. We previously revealed that the porous silicate-containing α-TCP granules provided earlier bone formation and showed lower biodegradability than the porous silicate-free α-TCP granules in vivo. In order to reveal the mechanism of the bone formation promoted by silicate incorporation, the proliferation and differentiation of osteoblast-like cells on the silicate-containing and silicate-free α-TCP ceramics were examined in vitro. The silicate incorporation in α-TCP promoted the differentiation of osteoblast-like cells, and it might be one of the factors to promote bone formation In Vivo.


Sign in / Sign up

Export Citation Format

Share Document