Concentration‐dependent effects of latex F1 ‐protein fraction incorporated into deproteinized bovine bone and biphasic calcium phosphate on the repair of critical‐size bone defects

2020 ◽  
Vol 108 (8) ◽  
pp. 3270-3285
Author(s):  
Suelen Paini ◽  
Ana Carolina Cestari Bighetti ◽  
Tania Mary Cestari ◽  
Ricardo Vinicius Nunes Arantes ◽  
Paula Sanches Santos ◽  
...  
2021 ◽  
Vol 32 (1) ◽  
pp. 26-33
Author(s):  
Marina Araujo Brito ◽  
Leomar Emanuel Almeida Mecca ◽  
Thais dos Santos Sedoski ◽  
Tayline Mroczek ◽  
Marcela Claudino ◽  
...  

Abstract The limited options for bone repair have led to an extensive research of the field and the development of alloplastic and xenogeneic grafts. The purpose of this study was to evaluate bone repair with two bone substitutes: deproteinized bovine bone (DBB) and biphasic calcium phosphate ceramic (BCP) in critical-size defect. A total of 8-mm defects were made in the parietal bones of rabbits (n=12). The animals were divided into three experimental groups: sham (defect filled with a blood clot), DBB (defect filled with DBB), and BCP (defect filled with BCP). After the experimental periods of 15 and 45 days, the animals were euthanized and submitted to histomorphometric analysis. The total defect area, mineralized tissue area, biomaterial area, and soft tissue area were evaluated. A greater amount of immature bone tissue and biomaterial particles were observed in the BCP group compared to DBB and sham at 45 days (p<0.05). There was no difference in the qualitative pattern of bone deposition between DBB and BCP. However, the sham group did not show osteoid islands along with the defect, presenting a greater amount of collagen fibers as well in relation to the DBB and BCP groups. There was a greater number of inflammatory cells in the DBB at 45 days compared to BCP and sham groups. In conclusion, BCP and DBB are options for optimizing the use of bone grafts for maxillofacial rehabilitation. Bone defects treated with BCP showed greater deposition of bone tissue at 45 days.


2014 ◽  
Vol 25 (5) ◽  
pp. 379-384 ◽  
Author(s):  
Carlos Alberto Yoshihiro Takauti ◽  
Fabio Futema ◽  
Rui Barbosa de Brito Junior ◽  
Aline Corrêa Abrahão ◽  
Claudio Costa ◽  
...  

This study evaluated the bone regeneration process in rabbit calvaria induced by three types of biomaterials: two xenogenous, consisting of deproteinized bovine bone, while the other was alloplastic, based on biphasic calcium phosphate. Five New Zealand white rabbits weighing between 2,900 and 3,500 g were submitted to four standard 8 mm-diameter perforations at the parietal bone. Three perforations were filled with three grafts and biomaterials, two of them received bovine Bio-Oss(r) and Endobon(r) Xenograft Granules, and the other consisted of fully alloplastic Straumann(r) Bone Ceramic. The fourth remaining cavity was used as control with coagulum. After eight weeks, the animals were sacrificed, and the samples were prepared for morphometric and qualitative analysis. The cavities filled with alloplastic biomaterials showed higher percentages of newly formed bone (p<0.05), while the cavities with xenogenous biomaterials showed higher amount of residual graft (p<0.05). Although the results showed greater bone formation with Straumann(r) Bone Ceramic, further studies are required to prove which is the more effective biomaterial for bone induction process.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Carole Chakar ◽  
Nada Naaman ◽  
Emmanuel Soffer ◽  
Nicolas Cohen ◽  
Nada El Osta ◽  
...  

Bone substitutes alone or supplemented with platelet-derived concentrates are widely used to promote bone regeneration but their potency remains controversial. The aim of this study was, therefore, to compare the regenerative potential of preparations containing autologous platelet lysate (APL) and particles of either deproteinized bovine bone mineral (DBBM) or biphasic calcium phosphate (BCP), two bone substitutes with different resorption patterns. Rabbit APL was prepared by freeze-thawing a platelet suspension. Critical-size defects in rabbit femoral condyle were filled with DBBM or DBBM+APL and BCP or BCP+APL. Rabbits were sacrificed after six weeks and newly formed bone and residual implanted material were evaluated using nondemineralized histology and histomorphometry. New bone was observed around particles of all fillers tested. In the defects filled with BCP, the newly formed bone area was greater (70%;P<0.001) while the residual material area was lower (60%;P<0.001) than that observed in those filled with DBBM. New bone and residual material area of defects filled with either APL+DBBM or APL+BCP were similar to those observed in those filled with the material alone. In summary, osteoconductivity and resorption of BCP were greater than those of DBBM, while APL associated with either DBBM or BCP did not have an additional benefit.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Che Nor Zarida Che Seman ◽  
Zamzuri Zakaria ◽  
Zunariah Buyong ◽  
Mohd Shukrimi Awang ◽  
Ahmad Razali Md Ralib @ Md Raghib

Introduction: A novel injectable calcium phosphate bone cement (osteopaste) has been developed. Its potential application in orthopaedics as a filler of bone defects has been studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium phosphate (TCP) powder. The aim of the present study was to evaluate the healing process of osteopaste in rabbit tibia. Materials and method: The implantation procedure was carried out on thirty-nine of New Zealand white rabbits. The in vivo bone formation was investigated by either implanting the Osteopaste, Jectos or MIIG – X3 into a critical size defect (CSD) model in the proximal tibial metaphysis. CSD without treatment served as negative control. After 1 day, 6 and 12 weeks, the rabbits were euthanized, the bone were harvested and subjected for analysis. Results: Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. There was direct contact between osteopaste material and host bone. The new bone was seen bridging the defect. Conclusion: The result showed that Osteopaste could be a new promising biomaterial for bone repair and has a potential in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document