Angle‐ply scaffold supports annulus fibrosus matrix expression and remodeling by mesenchymal stromal and annulus fibrosus cells

Author(s):  
Ryan Borem ◽  
Allison Madeline ◽  
Chris Theos ◽  
Ricardo Vela ◽  
Alex Garon ◽  
...  
2017 ◽  
Vol 61 ◽  
pp. 88-93 ◽  
Author(s):  
Xin Gao ◽  
Qiaoqiao Zhu ◽  
Weiyong Gu

2021 ◽  
Vol 22 (9) ◽  
pp. 4415
Author(s):  
Anthony J. Hayes ◽  
James Melrose

The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.


2021 ◽  
pp. 100077
Author(s):  
Audrey McAlinden ◽  
David M. Hudson ◽  
Aysel A. Fernandes ◽  
Soumya Ravindran ◽  
Russell J. Fernandes

JOR Spine ◽  
2021 ◽  
Author(s):  
Xiangjiang Wang ◽  
Rahul Gawri ◽  
Changbin Lei ◽  
Joon Lee ◽  
Gwendolyn Sowa ◽  
...  

2010 ◽  
Vol 20 (03) ◽  
pp. 561-582 ◽  
Author(s):  
ZHIQIANG LI ◽  
DAIZHAN CHENG

Using semi-tensor product of matrices, a matrix expression for multivalued logic is proposed, where a logical variable is expressed as a vector, and a logical function is expressed as a multilinear mapping. Under this framework, the dynamics of a multivalued logical network is converted into a standard discrete-time linear system. Analyzing the network transition matrix, easily computable formulas are obtained to show (a) the number of equilibriums; (b) the numbers of cycles of different lengths; (c) transient period, the minimum time for all points to enter the set of attractors, respectively. A method to reconstruct the logical network from its network transition matrix is also presented. This approach can also be used to convert the dynamics of a multivalued control network into a discrete-time bilinear system. Then, the structure and the controllability of multivalued logical control networks are revealed.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Dong Wang ◽  
Robert Hartman ◽  
Chao Han ◽  
Chao-ming Zhou ◽  
Brandon Couch ◽  
...  

Abstract Background Intervertebral disc degeneration contributes to low back pain. The avascular intervertebral disc consists of a central hypoxic nucleus pulpous (NP) surrounded by the more oxygenated annulus fibrosus (AF). Lactic acid, an abundant end-product of NP glycolysis, has long been viewed as a harmful waste that acidifies disc tissue and decreases cell viability and function. As lactic acid is readily converted into lactate in disc tissue, the objective of this study was to determine whether lactate could be used by AF cells as a carbon source rather than being removed from disc tissue as a waste byproduct. Methods Import and conversion of lactate to tricarboxylic acid (TCA) cycle intermediates and amino acids in rabbit AF cells were measured by heavy-isotope (13C-lactate) tracing experiments using mass spectrometry. Levels of protein expression of lactate converting enzymes, lactate importer and exporter in NP and AF tissues were quantified by Western blots. Effects of lactate on proteoglycan (35S-sulfate) and collagen (3H-proline) matrix protein synthesis and oxidative phosphorylation (Seahorse XFe96 Extracellular Flux Analyzer) in AF cells were assessed. Results Heavy-isotope tracing experiments revealed that AF cells imported and converted lactate into TCA cycle intermediates and amino acids using in vitro cell culture and in vivo models. Addition of exogenous lactate (4 mM) in culture media induced expression of the lactate importer MCT1 and increased oxygen consumption rate by 50%, mitochondrial ATP-linked respiration by 30%, and collagen synthesis by 50% in AF cell cultures grown under physiologic oxygen (2-5% O2) and glucose concentration (1-5 mM). AF tissue highly expresses MCT1, LDH-H, an enzyme that preferentially converts lactate to pyruvate, and PDH, an enzyme that converts pyruvate to acetyl-coA. In contrast, NP tissue highly expresses MCT4, a lactate exporter, and LDH-M, an enzyme that preferentially converts pyruvate to lactate. Conclusions These findings support disc lactate-dependent metabolic symbiosis in which lactate produced by the hypoxic, glycolytic NP cells is utilized by the more oxygenated AF cells via oxidative phosphorylation for energy and matrix production, thus shifting the current research paradigm of viewing disc lactate as a waste product to considering it as an important biofuel. These scientifically impactful results suggest novel therapeutic targets in disc metabolism and degeneration.


Sign in / Sign up

Export Citation Format

Share Document