Partial characterisation of the high and low molecular weight forms of P388D1-derived interleukin 1

1984 ◽  
Vol 26 (2) ◽  
pp. 65-73 ◽  
Author(s):  
R. L. Prestidge ◽  
W. J. Koopman ◽  
J. C. Bennett
1996 ◽  
Vol 271 (1) ◽  
pp. R149-R156
Author(s):  
E. F. Fincher ◽  
L. Johannsen ◽  
L. Kapas ◽  
S. Takahashi ◽  
J. M. Krueger

Excess sleep and fever are central nervous system (CNS) facets of the acute phase response; these responses are induced by microbial products, such as muramyl peptides, via their ability to enhance cytokine production. Although peripheral macrophages are known to digest bacteria, thereby releasing muramyl peptides that, in turn, stimulate cytokine production, it was unknown whether CNS phagocytes such as microglia also had this capacity. Primary cultures of microglia were allowed to phagocytize and digest Staphylococcus aureus radiolabeled with a cell wall-specific marker. Radiolabeled low molecular weight substances released into the culture medium were partially purified and tested for the ability to induce excess sleep, fever, and cytokine production. These substances increased non-rapid eye movement sleep, electroencephalographic slow-wave activity, and brain temperature after intracerebroventricular injection into rabbits. They also induced interleukin-1, tumor necrosis factor, and the interleukin-1 receptor antagonist production in human monocytes. Results suggest that microglia perform fundamental macrophage functions and further implicate microglia as resident immunocompetent cells.


Author(s):  
Clément Saidou ◽  
Jean Bosco Tchatchueng ◽  
Robert Ndjouenkeu ◽  
Denis CD Roux

In an attempt to understand the potential valorisation of local African legumes, hydrocolloids of five legumes (Corchorus olithorus, Triumfetta cordifolia, Cerathoteca sesamoides, Adansona digitata, and Bridelia thermifolia) were extracted and characterised as polysaccharides. All the gum extracted were rich in galactose residue (31-62 percent), suggesting a galactan backbone for the polysaccharides structure. The other sugar residues of the polysaccharides were arabinose (22-30 percent) in T. cordifolia and B. thermifolia, glucose (22-36 percent) in B. thermofolia, A. digitata and C. olithorus, and mannose (32.9 percent) in C. sesamoides. The intrinsic viscosity measurements showed that gums from T. cordifolia, B. thermifolia, C sesamoides and C. olithorus are high molecular weight polymers, while A. digitata contains low molecular weight polymers. The gum extracts also showed oil/water emulsion activity and were able to keep 60-90 percent of the emulsion stable on heating.


2020 ◽  
Author(s):  
Thomas Vanassche ◽  
Matthias M Engelen ◽  
Quentin Van Thillo ◽  
Joost Wauters ◽  
Jan Gunst ◽  
...  

Abstract BackgroundThe peak of the global COVID-19 pandemic has not yet been reached and many countries face the prospect of a second wave of infections before effective vaccinations will be available. After an initial phase of viral replication, some patients develop a second illness phase in which the host thrombotic and inflammatory responses seems to drive complications. Severe COVID-19 disease is linked to high mortality, hyperinflammation, and a remarkably high incidence of thrombotic events. We hypothesize a crucial pathophysiological role for the contact pathway of coagulation and the kallikrein-bradykinin pathway. Therefore, drugs that modulate this excessive thromboinflammatory response should be investigated in severe COVID-19.MethodsIn this adaptive, open-label multicenter randomized clinical trial we compare low molecular weight heparins at 50 IU anti-Xa/kg twice daily - or 75 IU anti-Xa twice daily for intensive care (ICU) patients - in combination with aprotinin to standard thromboprophylaxis in hospitalized COVID-19 patients. In the case of hyperinflammation, the interleukin-1-receptor antagonist anakinra will be added on top of the interventional drugs. In a pilot phase, the effect of the intervention on thrombotic markers (D-dimer) will be assessed. In the full trial, the primary outcome is defined as the effect of the interventional drugs on clinical status.DiscussionIn this trial we target the thromboinflammatory response at multiple levels. We intensify the dose of low molecular weight heparins to reduce thrombotic complications. Aprotinin is a potent kallikrein pathway inhibitor that reduces fibrinolysis, activation of the contact pathway of coagulation, and local inflammatory response. Additionally, aprotinin has shown in vitro inhibitory effects on SARS-CoV-2 cellular entry. Because the excessive thromboinflammatory response is one of the most adverse prognostic factors in COVID-19, we will add anakinra, a recombinant interleukin-1 receptor antagonist, to the regimen in case of severely increased inflammatory parameters. This way, we hope to modulate the systemic response to SARS-CoV-2 and avoid disease progressions with a potentially fatal outcome. Trial registrationThis trial is registered in the EU Clinical Trials Register. Registration number: 2020-001739-28. Registered on 2020-04-10.


Trials ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
T. Vanassche ◽  
◽  
M. M. Engelen ◽  
Q. Van Thillo ◽  
J. Wauters ◽  
...  

Abstract Background The peak of the global COVID-19 pandemic has not yet been reached, and many countries face the prospect of a second wave of infections before effective vaccinations will be available. After an initial phase of viral replication, some patients develop a second illness phase in which the host thrombotic and inflammatory responses seem to drive complications. Severe COVID-19 disease is linked to high mortality, hyperinflammation, and a remarkably high incidence of thrombotic events. We hypothesize a crucial pathophysiological role for the contact pathway of coagulation and the kallikrein-bradykinin pathway. Therefore, drugs that modulate this excessive thromboinflammatory response should be investigated in severe COVID-19. Methods In this adaptive, open-label multicenter randomized clinical trial, we compare low molecular weight heparins at 50 IU anti-Xa/kg twice daily—or 75 IU anti-Xa twice daily for intensive care (ICU) patients—in combination with aprotinin to standard thromboprophylaxis in hospitalized COVID-19 patients. In the case of hyperinflammation, the interleukin-1 receptor antagonist anakinra will be added on top of the drugs in the interventional arm. In a pilot phase, the effect of the intervention on thrombotic markers (D-dimer) will be assessed. In the full trial, the primary outcome is defined as the effect of the interventional drugs on clinical status as defined by the WHO ordinal scale for clinical improvement. Discussion In this trial, we target the thromboinflammatory response at multiple levels. We intensify the dose of low molecular weight heparins to reduce thrombotic complications. Aprotinin is a potent kallikrein pathway inhibitor that reduces fibrinolysis, activation of the contact pathway of coagulation, and local inflammatory response. Additionally, aprotinin has shown in vitro inhibitory effects on SARS-CoV-2 cellular entry. Because the excessive thromboinflammatory response is one of the most adverse prognostic factors in COVID-19, we will add anakinra, a recombinant interleukin-1 receptor antagonist, to the regimen in case of severely increased inflammatory parameters. This way, we hope to modulate the systemic response to SARS-CoV-2 and avoid disease progressions with a potentially fatal outcome. Trial registration The EU Clinical Trials Register 2020-001739-28. Registered on April 10, 2020.


2020 ◽  
Author(s):  
Thomas Vanassche ◽  
Matthias M Engelen ◽  
Quentin Van Thillo ◽  
Joost Wauters ◽  
Jan Gunst ◽  
...  

Abstract Background The peak of the global COVID-19 pandemic has not yet been reached and many countries face the prospect of a second wave of infections before effective vaccinations will be available. After an initial phase of viral replication, some patients develop a second illness phase in which the host thrombotic and inflammatory responses seems to drive complications. Severe COVID-19 disease is linked to high mortality, hyperinflammation, and a remarkably high incidence of thrombotic events. We hypothesize a crucial pathophysiological role for the contact pathway of coagulation and the kallikrein-bradykinin pathway. Therefore, drugs that modulate this excessive thromboinflammatory response should be investigated in severe COVID-19.Methods In this adaptive, open-label multicenter randomized clinical trial we compare low molecular weight heparins at 50 IU anti-Xa/kg twice daily - or 75 IU anti-Xa twice daily for intensive care (ICU) patients - in combination with aprotinin to standard thromboprophylaxis in hospitalized COVID-19 patients. In the case of hyperinflammation, the interleukin-1-receptor antagonist anakinra will be added on top of the drugs in the interventional arm. In a pilot phase, the effect of the intervention on thrombotic markers (D-dimer) will be assessed. In the full trial, the primary outcome is defined as the effect of the interventional drugs on clinical status as defined by the WHO ordinal scale for clinical improvement. Discussion In this trial we target the thromboinflammatory response at multiple levels. We intensify the dose of low molecular weight heparins to reduce thrombotic complications. Aprotinin is a potent kallikrein pathway inhibitor that reduces fibrinolysis, activation of the contact pathway of coagulation, and local inflammatory response. Additionally, aprotinin has shown in vitro inhibitory effects on SARS-CoV-2 cellular entry. Because the excessive thromboinflammatory response is one of the most adverse prognostic factors in COVID-19, we will add anakinra, a recombinant interleukin-1 receptor antagonist, to the regimen in case of severely increased inflammatory parameters. This way, we hope to modulate the systemic response to SARS-CoV-2 and avoid disease progressions with a potentially fatal outcome. Trial registration This trial is registered in the EU Clinical Trials Register. Registration number: 2020-001739-28. Registered on 2020-04-10.


Author(s):  
G.K.W. Balkau ◽  
E. Bez ◽  
J.L. Farrant

The earliest account of the contamination of electron microscope specimens by the deposition of carbonaceous material during electron irradiation was published in 1947 by Watson who was then working in Canada. It was soon established that this carbonaceous material is formed from organic vapours, and it is now recognized that the principal source is the oil-sealed rotary pumps which provide the backing vacuum. It has been shown that the organic vapours consist of low molecular weight fragments of oil molecules which have been degraded at hot spots produced by friction between the vanes and the surfaces on which they slide. As satisfactory oil-free pumps are unavailable, it is standard electron microscope practice to reduce the partial pressure of organic vapours in the microscope in the vicinity of the specimen by using liquid-nitrogen cooled anti-contamination devices. Traps of this type are sufficient to reduce the contamination rate to about 0.1 Å per min, which is tolerable for many investigations.


1998 ◽  
Vol 1 (5) ◽  
pp. 166-174 ◽  
Author(s):  
Evelyn R Hermes De Santis ◽  
Betsy S Laumeister ◽  
Vidhu Bansal ◽  
Vandana Kataria ◽  
Preeti Loomba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document