Computational investigations on covalent dimerization/oligomerization of polyacenes: Is it relevant to soot formation?

2012 ◽  
Vol 33 (21) ◽  
pp. 1762-1772 ◽  
Author(s):  
D. Koley ◽  
E. Arunan ◽  
S. Ramakrishnan
Author(s):  
Luís Gustavo Pires Rodrigues ◽  
Francis França ◽  
Fernando Pereira ◽  
PAULO PAGOT

2020 ◽  
Vol 215 ◽  
pp. 169-183 ◽  
Author(s):  
Carson Chu ◽  
Murray J. Thomson
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3671
Author(s):  
Subrat Garnayak ◽  
Subhankar Mohapatra ◽  
Sukanta K. Dash ◽  
Bok Jik Lee ◽  
V. Mahendra Reddy

This article presents the results of computations on pilot-based turbulent methane/air co-flow diffusion flames under the influence of the preheated oxidizer temperature ranging from 293 to 723 K at two operating pressures of 1 and 3 atm. The focus is on investigating the soot formation and flame structure under the influence of both the preheated air and combustor pressure. The computations were conducted in a 2D axisymmetric computational domain by solving the Favre averaged governing equation using the finite volume-based CFD code Ansys Fluent 19.2. A steady laminar flamelet model in combination with GRI Mech 3.0 was considered for combustion modeling. A semi-empirical acetylene-based soot model proposed by Brookes and Moss was adopted to predict soot. A careful validation was initially carried out with the measurements by Brookes and Moss at 1 and 3 atm with the temperature of both fuel and air at 290 K before carrying out further simulation using preheated air. The results by the present computation demonstrated that the flame peak temperature increased with air temperature for both 1 and 3 atm, while it reduced with pressure elevation. The OH mole fraction, signifying reaction rate, increased with a rise in the oxidizer temperature at the two operating pressures of 1 and 3 atm. However, a reduced value of OH mole fraction was observed at 3 atm when compared with 1 atm. The soot volume fraction increased with air temperature as well as pressure. The reaction rate by soot surface growth, soot mass-nucleation, and soot-oxidation rate increased with an increase in both air temperature and pressure. Finally, the fuel consumption rate showed a decreasing trend with air temperature and an increasing trend with pressure elevation.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4608
Author(s):  
Jingjing He ◽  
Hao Chen ◽  
Xin Su ◽  
Bin Xie ◽  
Quanwei Li

Polyoxymethylene dimethyl ethers (PODE) are a newly appeared promising oxygenated alternative that can greatly reduce soot emissions of diesel engines. The combustion characteristics of the PODE and diesel blends (the blending ratios of PODE are 0%, 20%, 50% and 100% by volume, respectively) are investigated based on an optical engine under the injection timings of 6, 9, 12 and 15-degree crank angles before top dead center and injection pressures of 100 MPa, 120 MPa and 140 MPa in this study. The results show that both the ignition delay and combustion duration of the fuels decrease with the increasing of PODE ratio in the blends. However, in the case of the fuel supply of the optical engine being fixed, the heat release rate, cylinder pressure and temperature of the blend fuels decrease with the PODE addition due to the low lower heating value of PODE. The addition of PODE in diesel can significantly reduce the integrated natural flame luminosity and the soot formation under all injection conditions. When the proportion of the PODE addition is 50% and 100%, the chemical properties of the blends play a leading role in soot formation, while the change of the injection conditions have an inconspicuous effect on it. When the proportion of the PODE addition is 20%, the blend shows excellent characteristics in a comprehensive evaluation of combustion and soot reduction.


Sign in / Sign up

Export Citation Format

Share Document