Isolation and characterization of revertant cell lines. IV. Direct selection of serum-revertant sublines of SV40-transformed 3T3 mouse cells

1973 ◽  
Vol 82 (2) ◽  
pp. 189-198 ◽  
Author(s):  
A. Vogel ◽  
R. Pollack
1983 ◽  
Vol 3 (11) ◽  
pp. 1898-1908 ◽  
Author(s):  
G E Roth ◽  
H M Blanton ◽  
L J Hager ◽  
V A Zakian

Fragments of chromosomal DNA from a variety of eucaryotes can act as ARSs (autonomously replicating sequence) in yeasts. ARSs enable plasmids to be maintained in extrachromosomal form, presumably because they function as initiation sites for DNA replication. We isolated eight different sequences from mouse chromosomal DNA which function as ARSs in Saccharomyces cerevisiae (bakers' yeast). Although the replication efficiency of the different mouse ARSs in yeasts appears to vary widely, about one-half of them functions as well as the yeast chromosomal sequence ARS1. Moreover, five of the ARSs also promote self replication of plasmids in Schizosaccharomyces pombe (fission yeast). Each of the ARSs was cloned into plasmids suitable for transformation of mouse tissue culture cells. Plasmids were introduced into thymidine kinase (TK)-deficient mouse L cells by the calcium phosphate precipitation technique in the absence of carrier DNA. In some experiments, the ARS plasmid contained the herpes simplex virus type 1 TK gene; in other experiments (cotransformations), the TK gene was carried on a separate plasmid used in the same transformation. In contrast to their behavior in yeasts, none of the ARS plasmids displayed a significant increase in transformation frequency in mouse cells compared with control plasmids. Moreover, only 1 of over 100 cell lines contained the original plasmid in extrachromosomal form. The majority of cell lines produced by transformation with an ARS TK plasmid contained multiple copies of plasmid integrated into chromosomal DNA. In most cases, results with plasmids used in cotransformations were similar to those for plasmids carrying TK. However, cell lines produced by cotransformations with plasmids containing any one of three of the ARSs (m24, m25, or m26) often contained extrachromosomal DNAs.


1983 ◽  
Vol 3 (11) ◽  
pp. 1898-1908
Author(s):  
G E Roth ◽  
H M Blanton ◽  
L J Hager ◽  
V A Zakian

Fragments of chromosomal DNA from a variety of eucaryotes can act as ARSs (autonomously replicating sequence) in yeasts. ARSs enable plasmids to be maintained in extrachromosomal form, presumably because they function as initiation sites for DNA replication. We isolated eight different sequences from mouse chromosomal DNA which function as ARSs in Saccharomyces cerevisiae (bakers' yeast). Although the replication efficiency of the different mouse ARSs in yeasts appears to vary widely, about one-half of them functions as well as the yeast chromosomal sequence ARS1. Moreover, five of the ARSs also promote self replication of plasmids in Schizosaccharomyces pombe (fission yeast). Each of the ARSs was cloned into plasmids suitable for transformation of mouse tissue culture cells. Plasmids were introduced into thymidine kinase (TK)-deficient mouse L cells by the calcium phosphate precipitation technique in the absence of carrier DNA. In some experiments, the ARS plasmid contained the herpes simplex virus type 1 TK gene; in other experiments (cotransformations), the TK gene was carried on a separate plasmid used in the same transformation. In contrast to their behavior in yeasts, none of the ARS plasmids displayed a significant increase in transformation frequency in mouse cells compared with control plasmids. Moreover, only 1 of over 100 cell lines contained the original plasmid in extrachromosomal form. The majority of cell lines produced by transformation with an ARS TK plasmid contained multiple copies of plasmid integrated into chromosomal DNA. In most cases, results with plasmids used in cotransformations were similar to those for plasmids carrying TK. However, cell lines produced by cotransformations with plasmids containing any one of three of the ARSs (m24, m25, or m26) often contained extrachromosomal DNAs.


Glia ◽  
1994 ◽  
Vol 10 (3) ◽  
pp. 211-226 ◽  
Author(s):  
Scott R. Whittemore ◽  
Joseph T. Neary ◽  
Naomi Kleitman ◽  
Henry R. Sanon ◽  
Adelaida Benigno ◽  
...  

1980 ◽  
Vol 49 (1) ◽  
pp. 105-113 ◽  
Author(s):  
A. Morris ◽  
C. Clegg ◽  
J. Jones ◽  
B. Rodgers ◽  
R. J. Avery

1998 ◽  
Vol 4 (S2) ◽  
pp. 1158-1159
Author(s):  
Yuanan Lu ◽  
Vivek R. Nerurkar ◽  
Tina M. Weatherby ◽  
Richard Yanagihara

The near epidemic occurrence of fibropapilloma in green sea turtle (Chelonia my das) (Figure 1) significantly threatens the survival of this species which is protected under the U.S. Endangered Species Act. Although collective evidence suggests a viral etiology, the causative virus of green sea turtle fibropapilloma has not been isolated. To facilitate the isolation and characterization of the causative virus(es), we established 13 cell lines from multiple organs/tissues (tumor, kidney, lung, heart, gall bladder, testis, and skin) of green sea turtles with fibropapilloma. Serial subcultivation of cell lines derived from lungs, testis, eye soft tissues and tumors resulted in the formation of tumor-like aggregates, which attained sizes of 1-2 mm in diameter within two weeks (Figure 2). Media from such cultures, when inoculated onto cells derived from healthy turtle embryos, produced similar tumor-like aggregates, suggesting the presence of a transmissible agent.


Sign in / Sign up

Export Citation Format

Share Document