scholarly journals TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype

2010 ◽  
Vol 225 (3) ◽  
pp. 682-691 ◽  
Author(s):  
Gianluca Storci ◽  
Pasquale Sansone ◽  
Sara Mari ◽  
Gabriele D'Uva ◽  
Simona Tavolari ◽  
...  
2020 ◽  
Vol 24 (11) ◽  
pp. 6308-6323
Author(s):  
Hui Liu ◽  
Cheng Chen ◽  
Dongshen Ma ◽  
Yubing Li ◽  
Qianqian Yin ◽  
...  

2020 ◽  
Vol 10 ◽  
Author(s):  
Wenchang Qian ◽  
Yong Zhu ◽  
Mingming Wu ◽  
Qianying Guo ◽  
Zhengsheng Wu ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sung Hoon Choi ◽  
Hee-Sub Yoon ◽  
Shin-Ae Yoo ◽  
Sung Ho Yun ◽  
Joo-Hee Park ◽  
...  

Abstract Background Phosphorylation of NF-kappaB inhibitor alpha (IκBα) is key to regulation of NF-κB transcription factor activity in the cell. Several sites of IκBα phosphorylation by members of the IκB kinase family have been identified, but phosphorylation of the protein by other kinases remains poorly understood. We investigated a new phosphorylation site on IκBα and identified its biological function in breast cancer cells. Methods Previously, we observed that aurora kinase (AURK) binds IκBα in the cell. To identify the domains of IκBα essential for phosphorylation by AURK, we performed kinase assays with a series of IκBα truncation mutants. AURK significantly promoted activation of IκBα at serine 32 but not serine 36; by contrast, IκB kinase (IKK) family proteins activated both of these residues. We also confirmed phosphorylation of IκBα by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and nano-liquid chromatography hybrid quadrupole orbitrap mass spectrometer (nanoLC-MS/MS; Q-Exactive). Results We identified two novel sites of serine phosphorylation, S63 and S262. Alanine substitution of S63 and S262 (S63A and S262A) of IκBα inhibited proliferation and suppressed p65 transcription activity. In addition, S63A and/or S262A of IκBα regulated apoptotic and necroptotic effects in breast cancer cells. Conclusions Phosphorylation of IκBα by AURK at novel sites is related to the apoptosis and necroptosis pathways in breast cancer cells.


2015 ◽  
Vol 357 (1) ◽  
pp. 206-218 ◽  
Author(s):  
Saeb Aliwaini ◽  
Jade Peres ◽  
Wendy L. Kröger ◽  
Angelique Blanckenberg ◽  
Jo de la Mare ◽  
...  

The Breast ◽  
2019 ◽  
Vol 44 ◽  
pp. S32
Author(s):  
C. Sirinian ◽  
A. Papanastasiou ◽  
M. Schizas ◽  
M. Spella ◽  
G. Stathopoulos ◽  
...  

2020 ◽  
Vol 49 ◽  
pp. 102099
Author(s):  
Ning Wang ◽  
Jun Weng ◽  
Jing Xia ◽  
Yangjin Zhu ◽  
Qiongrong Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document