Hypoxia‐induced tRNA‐derived fragments, novel regulatory factor for doxorubicin resistance in triple‐negative breast cancer

2018 ◽  
Vol 234 (6) ◽  
pp. 8740-8751 ◽  
Author(s):  
Yangyang Cui ◽  
Yue Huang ◽  
Xiaowei Wu ◽  
Mingjie Zheng ◽  
Yiqin Xia ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Dar-Ren Chen ◽  
Dah-Yuu Lu ◽  
Hui-Yi Lin ◽  
Wei-Lan Yeh

Triple negative breast cancer (TNBC) is an aggressive histological subtype with limited treatment options and a worse clinical outcome compared with other breast cancer subtypes. Doxorubicin is considered to be one of the most effective agents in the treatment of TNBC. Unfortunately, resistance to this agent is common. In some drug-resistant cells, drug efflux is mediated by adenosine triphosphate-dependent membrane transporter termed adenosine triphosphate-binding cassette (ABC) transporter, which can drive the substrates across membranes against concentration gradient. In the tumor microenvironment, upon interaction with mesenchymal stem cells (MSCs), tumor cells exhibit altered biological functions of certain gene clusters, hence increasing stemness of tumor cells, migration ability, angiogenesis, and drug resistance. In our present study, we investigated the mechanism of TNBC drug resistance induced by adipose-derived MSCs. Upon exposure of TNBC to MSC-secreted conditioned medium (CM), noticeable drug resistance against doxorubicin with markedly increased BCRP protein expression was observed. Intracellular doxorubicin accumulation of TNBC was also decreased by MSC-secreted CM. Furthermore, we found that doxorubicin resistance of TNBC was mediated by IL-8 presented in the MSC-secreted CM. These findings may enrich the list of potential targets for overcoming drug resistance induced by MSCs in TNBC patients.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Dongwei Dou ◽  
Xiaoyang Ren ◽  
Mingli Han ◽  
Xiaodong Xu ◽  
Xin Ge ◽  
...  

Abstract Background Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer with a bad prognosis. Chemotherapy is still the standard of care for TNBC treatment. Circular RNAs (CircRNAs) have been recently discovered to be closely involved in the initiation and development of human cancers. Herein, we focus our attention on the functions and underlying mechanisms of circUBE2D2 in TNBC progression and chemoresistance. Methods The expression of circUBE2D2, miR-512-3p, and cell division cycle associated 3 (CDCA3) mRNA were determined by qRT-PCR. CCK-8, colony formation, transwell and flow cytometry assays were performed to detect cell proliferation, migration, invasion and apoptosis. Western blot assay was utilized to measure the protein level of CDCA3. RNA pull-down, luciferase reporter and RIP experiments were employed to examine the possible regulatory mechanism of circUBE2D2. Results CircUBE2D2 expression was elevated in TNBC tissues and cells. TNBC patients with high circUBE2D2 expression are inclined to present advanced TNM stage, lymph node metastasis and adverse prognosis. Knockdown of circUBE2D2 repressed cell proliferation, migration and invasion in vitro, and impeded tumor growth in vivo. Moreover, silencing of circUBE2D2 reduced doxorubicin resistance of TNBC cells. In-depth mechanism analysis revealed that circUBE2D2 served as a miRNA sponge to protect CDCA3 from the attack of miR-512-3p. Additionally, the tumor-suppressive effect induced by circUBE2D2 depletion was greatly impaired upon miR512-3p down-regulation or CDCA3 overexpression. Also, depletion of circUBE2D2 decreased the resistance to doxorubicin through regulating miR-512-3p/CDCA3 axis. Conclusion CircUBE2D2 promoted TNBC progression and doxorubicin resistance through acting as a sponge of miR-512-3p to up-regulate CDCA3 expression. Targeting circUBE2D2 combine with doxorubicin might be exploited as a novel therapy for TNBC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Eduardo Tormo ◽  
Sandra Ballester ◽  
Anna Adam-Artigues ◽  
Octavio Burgués ◽  
Elisa Alonso ◽  
...  

2021 ◽  
pp. 105975
Author(s):  
Gamal Eldein Fathy Abd-ellatef ◽  
Elena Gazzano ◽  
Ahmed H. El-Desoky ◽  
Ahmed R. Hamed ◽  
Joanna Kopecka ◽  
...  

Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
AJ Robles ◽  
L Du ◽  
S Cai ◽  
RH Cichewicz ◽  
SL Mooberry

Sign in / Sign up

Export Citation Format

Share Document