CXCL6 fuels the growth and metastases of esophageal squamous cell carcinoma cells both in vitro and in vivo through upregulation of PD‐L1 via activation of STAT3 pathway

Author(s):  
Shutao Zheng ◽  
Tongxue Shen ◽  
Qing Liu ◽  
Tao Liu ◽  
Aerziguli Tuerxun ◽  
...  
2010 ◽  
Vol 29 (1) ◽  
pp. 119-126 ◽  
Author(s):  
Ji Ma ◽  
Jian Zhang ◽  
Yuguang Ma ◽  
Jin Zheng ◽  
Yuanxiong Cheng ◽  
...  

Author(s):  
Xuechao Jia ◽  
Chuntian Huang ◽  
Yamei Hu ◽  
Qiong Wu ◽  
Fangfang Liu ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) is an aggressive and lethal cancer with a low 5 year survival rate. Identification of new therapeutic targets and its inhibitors remain essential for ESCC prevention and treatment. Methods TYK2 protein levels were checked by immunohistochemistry. The function of TYK2 in cell proliferation was investigated by MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and anchorage-independent cell growth. Computer docking, pull-down assay, surface plasmon resonance, and kinase assay were used to confirm the binding and inhibition of TYK2 by cirsiliol. Cell proliferation, western blot and patient-derived xenograft tumor model were used to determine the inhibitory effects and mechanism of cirsiliol in ESCC. Results TYK2 was overexpressed and served as an oncogene in ESCC. Cirsiliol could bind with TYK2 and inhibit its activity, thereby decreasing dimer formation and nucleus localization of signal transducer and activator of transcription 3 (STAT3). Cirsiliol could inhibit ESCC growth in vitro and in vivo. Conclusions TYK2 is a potential target in ESCC, and cirsiliol could inhibit ESCC by suppression of TYK2.


2016 ◽  
Vol 242 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Guanghui Cui ◽  
Donglei Liu ◽  
Weihao Li ◽  
Yuhang Li ◽  
Youguang Liang ◽  
...  

Increasing evidence suggests that miR-194 is down-regulated in esophageal squamous cell carcinoma tumor tissue. However, the role and underlying mechanism of miR-194 in esophageal squamous cell carcinoma have not been well defined. We used DIANA, TargetScan and miRanda to perform target prediction analysis and found KDM5B is a potential target of miR-194. Based on these findings, we speculated that miR-194 might play a role in esophageal squamous cell carcinoma development and progression by regulation the expression of KDM5B. We detected the expression of miR-194 and KDM5B by quantitative real-time reverse transcription PCR (qRT-PCR) and Western blot assays, respectively, and found down-regulation of miR-194 and up-regulation of KDM5B existed in esophageal squamous cell carcinoma cell lines. By detecting proliferation, invasion and apoptosis of TE6 and TE14 cells transfected with miR-194 mimics or mimic control, miR-194 was found to inhibit proliferation and invasion and promote apoptosis of esophageal squamous cell carcinoma cells. miR-194 was further verified to regulate proliferation, apoptosis and invasion of esophageal squamous cell carcinoma cells by directly targeting KDM5B. Furthermore, animal studies were performed and showed that overexpression of miR-194 inhibited the growth of esophageal squamous cell carcinoma tumors in vivo. These results confirmed our speculation that miR-194 targets KDM5B to inhibit esophageal squamous cell carcinoma development and progression. These findings offer new clues for esophageal squamous cell carcinoma development and progression and novel potential therapeutic targets for esophageal squamous cell carcinoma.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodan Wu ◽  
Yihui Fan ◽  
Yupeng Liu ◽  
Biao Shen ◽  
Haimin Lu ◽  
...  

Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.


Author(s):  
Zhirong Li ◽  
Xuebo Qin ◽  
Wei Bian ◽  
Yishuai Li ◽  
Baoen Shan ◽  
...  

Abstract Background In recent years, long non-coding RNAs (lncRNAs) are of great importance in development of different types of tumors, while the function of lncRNA ZFAS1 is rarely discussed in esophageal squamous cell carcinoma (ESCC). Therefore, we performed this study to explore the expression of exosomal lncRNA ZFAS1 and its molecular mechanism on ESCC progression. Methods Expression of ZFAS1 and miR-124 in ESCC tissues was detected. LncRNA ZFAS1 was silenced to detect its function in the biological functions of ESCC cells. A stable donor and recipient culture model was established. Eca109 cells transfected with overexpressed and low expressed ZFAS1 plasmid and miR-124 inhibitor labeled by Cy3 were the donor cells, and then co-cultured with recipient cells to observe the transmission of Cy3-ZFAS1 between donor cells and recipient cells. The changes of cell proliferation, apoptosis, invasion, and migration in recipient cells were detected. The in vivo experiment was conducted for verifying the in vitro results. Results LncRNA ZFAS1 was upregulated and miR-124 was down-regulated in ESCC tissues. Silencing of ZFAS1 contributed to suppressed proliferation, migration, invasion and tumor growth in vitro and induced apoptosis of ESCC cells. LncRNA ZFAS1 was considered to be a competing endogenous RNA to regulate miR-124, thereby elevating STAT3 expression. Exosomes shuttled ZFAS1 stimulated proliferation, migration and invasion of ESCC cells and restricted their apoptosis with increased STAT3 and declined miR-124. Furthermore, in vivo experiment suggested that elevated ZFAS1-exo promoted tumor growth in nude mice. Conclusion This study highlights that exosomal ZFAS1 promotes the proliferation, migration and invasion of ESCC cells and inhibits their apoptosis by upregulating STAT3 and downregulating miR-124, thereby resulting in the development of tumorigenesis of ESCC.


Sign in / Sign up

Export Citation Format

Share Document