scholarly journals Cirsiliol targets tyrosine kinase 2 to inhibit esophageal squamous cell carcinoma growth in vitro and in vivo

Author(s):  
Xuechao Jia ◽  
Chuntian Huang ◽  
Yamei Hu ◽  
Qiong Wu ◽  
Fangfang Liu ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) is an aggressive and lethal cancer with a low 5 year survival rate. Identification of new therapeutic targets and its inhibitors remain essential for ESCC prevention and treatment. Methods TYK2 protein levels were checked by immunohistochemistry. The function of TYK2 in cell proliferation was investigated by MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and anchorage-independent cell growth. Computer docking, pull-down assay, surface plasmon resonance, and kinase assay were used to confirm the binding and inhibition of TYK2 by cirsiliol. Cell proliferation, western blot and patient-derived xenograft tumor model were used to determine the inhibitory effects and mechanism of cirsiliol in ESCC. Results TYK2 was overexpressed and served as an oncogene in ESCC. Cirsiliol could bind with TYK2 and inhibit its activity, thereby decreasing dimer formation and nucleus localization of signal transducer and activator of transcription 3 (STAT3). Cirsiliol could inhibit ESCC growth in vitro and in vivo. Conclusions TYK2 is a potential target in ESCC, and cirsiliol could inhibit ESCC by suppression of TYK2.

Author(s):  
Zhirong Li ◽  
Xuebo Qin ◽  
Wei Bian ◽  
Yishuai Li ◽  
Baoen Shan ◽  
...  

Abstract Background In recent years, long non-coding RNAs (lncRNAs) are of great importance in development of different types of tumors, while the function of lncRNA ZFAS1 is rarely discussed in esophageal squamous cell carcinoma (ESCC). Therefore, we performed this study to explore the expression of exosomal lncRNA ZFAS1 and its molecular mechanism on ESCC progression. Methods Expression of ZFAS1 and miR-124 in ESCC tissues was detected. LncRNA ZFAS1 was silenced to detect its function in the biological functions of ESCC cells. A stable donor and recipient culture model was established. Eca109 cells transfected with overexpressed and low expressed ZFAS1 plasmid and miR-124 inhibitor labeled by Cy3 were the donor cells, and then co-cultured with recipient cells to observe the transmission of Cy3-ZFAS1 between donor cells and recipient cells. The changes of cell proliferation, apoptosis, invasion, and migration in recipient cells were detected. The in vivo experiment was conducted for verifying the in vitro results. Results LncRNA ZFAS1 was upregulated and miR-124 was down-regulated in ESCC tissues. Silencing of ZFAS1 contributed to suppressed proliferation, migration, invasion and tumor growth in vitro and induced apoptosis of ESCC cells. LncRNA ZFAS1 was considered to be a competing endogenous RNA to regulate miR-124, thereby elevating STAT3 expression. Exosomes shuttled ZFAS1 stimulated proliferation, migration and invasion of ESCC cells and restricted their apoptosis with increased STAT3 and declined miR-124. Furthermore, in vivo experiment suggested that elevated ZFAS1-exo promoted tumor growth in nude mice. Conclusion This study highlights that exosomal ZFAS1 promotes the proliferation, migration and invasion of ESCC cells and inhibits their apoptosis by upregulating STAT3 and downregulating miR-124, thereby resulting in the development of tumorigenesis of ESCC.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lili Zhu ◽  
Xinhuan Chen ◽  
Yanyan Zhu ◽  
Jiace Qin ◽  
Tingting Niu ◽  
...  

Dihydroartemisinin (DHA), a sesquiterpene lactone with endoperoxide bridge, is one of the derivatives of artemisinin. In addition to having good antimalarial properties, DHA exhibits anticancer effects including against malignant solid tumors. However, the mechanism by which DHA inhibits the progression of esophageal cancer, especially esophageal squamous cell carcinoma (ESCC), is unclear. In this study, DHA was found to inhibit the proliferation of ESCC, and the underlying molecular mechanisms were explored. DHA inhibited ESCC cells proliferation and anchorage-independent growth. Flow cytometry analysis revealed that DHA significantly blocked cell cycle in the G1 phase. The results of human phospho-kinase array revealed that DHA downregulated the levels of p70S6KT389 and p70S6KT421/S424. Furthermore, the levels of mTORS2448, p70S6KT389, p70S6KT421/S424 and RPS6S235/S236 were decreased after DHA treatment in KYSE30 and KYSE150 cells. We then explored the proteins targeted by DHA to inhibit the mTOR-p70S6K-RPS6 pathway. Results of the in vitro kinase assay revealed that DHA significantly inhibited phosphorylation of mTORS2448 by binding to AKT1 and p70S6K kinases. In vivo, DHA inhibited the tumor growth of ESCC patient-derived xenografts and weakened p-mTOR, p-p70S6K, and p-RPS6 expression in tumor tissues. Altogether, our results indicate that DHA has antiproliferative effects in ESCC cells and can downregulate mTOR cascade pathway partially by binding to AKT1 and p70S6K. Thus, DHA has considerable potential for the prevention or treatment of ESCC.


2021 ◽  
Author(s):  
Xinning Liu ◽  
Yanan Jiang ◽  
Hao Zhou ◽  
Mingzhu Li ◽  
Zhuo Bao ◽  
...  

Abstract Background: Esophageal squamous cell carcinoma (ESCC) is a high recurrence rate of upper-digestive cancer with a low 5-year survival rate. Therefore, there is an urgent need for effective chemopreventive drugs that can extend the survival rate of patients. Through screening of FDA-approved drugs, dasabuvir was found to suppress ESCC proliferation. Methods: Cell number count assay was used to screen for drugs with inhibitory effect on ESCC cells and detect the inhibitory effect of dasabuvir on proliferation of ESCC cells KYSE150 and KYE450. Phosphoproteomics and proteomics were used to investigate the mechanism of dasabuvir inhibiting ESCC. In vitro kinase assay was used to verify the inhibition of extracellular signal-regulated kinase 1/2 (ERK1/2) activation by ROCK1 by dasabuvir. The PDX model was used to test the inhibitory effect of dasabuvir on ESCC in vivo.Results: In this study, we found that dasabuvir is a novel inhibitor of Rho-associated protein kinase 1 (ROCK1). Dasabuvir inhibited the growth of the KYSE150 and KYSE450 ESCC cell lines in a time and dose-dependent manner and arrested cell cycle at the G0/G1 phase. The antitumor activity was validated in vivo using a patient-derived xenograft tumor model in mice. Dasabuvir inhibited the activation of ERK1/2 by ROCK1 and downregulated cyclin-dependent kinase 4 (CDK4) and cyclin D1 expression. Conclusions: These results provide the first evidence that dasabuvir serves as a ROCK1 inhibitor, suppresses ESCC growth in vivo and in vitro, and arrests the cell cycle through the ROCK1/ERK signaling pathway.


Author(s):  
Yaxing Wei ◽  
Wenjie Wu ◽  
Yanan Jiang ◽  
Hao Zhou ◽  
Yin Yu ◽  
...  

Abstract Background Due to the high recurrence and low 5-year survival rates of esophageal squamous cell carcinoma (ESCC) after treatment, the discovery of novel drugs for recurrence chemoprevention is of particular importance. Methods We screened the FDA-approved drug library and found that Nuplazid, an atypical antipsychotic that acts as an effective 5-HT 2 A receptor inverse agonist, could potentially exert anticancer effects in vitro and in vivo on ESCC. Results Pull-down results indicated that Nuplazid binds with p21-activated kinase 4 (PAK4), and a kinase assay showed that Nuplazid strongly suppressed PAK4 kinase activity. Moreover, Nuplazid exhibited inhibitory effects on ESCC in vivo. Conclusions Our findings indicate that Nuplazid can suppress ESCC progression through targeting PAK4.


Author(s):  
Jie Li ◽  
Xu Han ◽  
Yan Gu ◽  
Jixiang Wu ◽  
Jianxiang Song ◽  
...  

Esophageal squamous cell carcinoma (ESCC) has been one of the key causes of cancer deaths worldwide. It has been found that long non-coding RNA (lncRNA) is related to the generation and progression of various cancers (including ESCC). However, there are still many lncRNAs related to ESCC whose functions and molecular mechanisms have not been clearly elucidated. In this study, we first reported that lncRNA MTX2-6 was significantly downregulated in ESCC tissues and cell lines. The decreased expression of MTX2-6 is closely related to larger tumor and worse prognosis of ESCC patients. Through a series of functional experiments, we detected that overexpressed MTX2-6 inhibited cell proliferation and promoted cell apoptosis of ESCC in vitro and in vivo. Further studies showed that MTX2-6 exerts as a competing endogenous RNA (ceRNA) by binding miR-574-5p and elevates the expression of SMAD4 in ESCC. In summary, our results clarify the tumor suppressor roles of MTX2-6/miR-574-5p/SMAD4 axis in the progression of ESCC and provide emerging therapeutic targets for ESCC patients.


2021 ◽  
Author(s):  
Yi He ◽  
Bin Li ◽  
Yang Yang ◽  
Rong Hua ◽  
Zhigang Li

Abstract Background: Long non-coding RNAs (lncRNAs) are reported act as important regulators in various cancers. LncRNA JPX was identified as an oncogenic regulator in lung cancer. However, the function of lncRNA JPX in the progression of esophageal squamous cell carcinoma (ESCC) remains unclear. Methods: The effects and molecular mechanism of JPX on the progression of ESCC were investigated using fluorescence in situ hybridization (FISH), cell proliferation, quantitative real-time PCR (qRT-PCR), western blot, dual luciferase, cell cycle, 5-Ethynyl-2′-Deoxyuridine (EdU) incorporation, transwell, RNA pull-down, tube formation and RNA immunoprecipitation (RIP) assays. Results: In the present study, we found JPX was highly expressed in tissues of ESCC patients and different ESCC cell lines. Functional assays demonstrated that JPX promoted ESCC cell proliferation, migration and invasion in vitro and tumor growth in vivo. Moreover, we found JPX promoted ESCC mobility in vitro. Mechanistically, the results showed that JPX functions as a sponge of miR-516b-5p, which targets an oncogene vascular endothelial growth factor A (VEGFA) in ESCC cells. Interactions between miR-516b-5p and JPX or VEGFA were confirmed by luciferase reporter assays. Furthermore, inhibition of JPX significantly attenuated the cell growth and mobility ability of ESCC cells in vitro. In addition, miR-516b-5p overexpression abrogated JPX enhanced proliferation, migration, invasion, and angiogenesis of ESCC cells. Conclusions: Our study demonstrated that JPX played an important role in promoting ESCC progression via the miR-516b-5p/VEGFA pathway and might serve as a promising novel therapeutic target for ESCC patients.


2021 ◽  
Author(s):  
Donghao Wang ◽  
Ning Yang ◽  
Xiaofan Zhang ◽  
Mingzhu Li ◽  
Xin Li ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) accounts for 90% of esophageal cancer and has a high mortality rate worldwide. The clinical treatment of ESCC is mainly surgical resection. The five-year survival rate of ESCC patients in developing countries is less than 20%. Therefore, identifying new and effective drugs that can prevent the occurrence and recurrence of ESCC is clinically significant. Here, daurisoline, a bis-benzylisoquinoline alkaloid, was found to have an anticancer effect on ESCC. Methods We investigated the effects of daurisoline on ESCC cell growth and proliferation using ESCC cell lines (KYSE150 and KYSE450 cells) and tumor growth in an ESCC patient-derived xenograft model. Phosphoproteomics was used to identify changes in protein phosphorylation after daurisoline treatment. Molecular docking simulation, pull down assay and amino acid mutation experiments were conducted to determine the target proteins and specific amino acid binding sites of daurisoline. In vitro kinase assay was used to determine the effect of daurisoline on protein phosphorylation. The correlation between MEK1/2 and ERK1/2 expression levels in ESCC was analyzed using TCGA database. Results In vitro experiments showed that daurisoline inhibited the proliferation and anchorage-independent growth of ESCC cells. In vivo experiments indicated that daurisoline significantly inhibited tumor growth. Phosphoproteomics analysis revealed that daurisoline reduced ERK1/2 phosphorylation. A pull down assay showed that daurisoline could bind to MEK1/2. In vitro kinase assay confirmed that daurisoline inhibited the biological functions of MEK1/2. We observed a significant correlation between MEK1 and ERK2 in ESCC from the TCGA database. Conclusion Daurisoline is a MEK1/2 inhibitor that suppressed ESCC growth in vitro and in vivo.


2020 ◽  
Author(s):  
Ying Zhang ◽  
Zhaoyong Liu ◽  
Weiqing Lu ◽  
Xia Yang ◽  
Yelong Chen ◽  
...  

Abstract Background Esophageal squamous cell carcinoma (ESCC) remains one of the most refractory malignancies worldwide. MAP2K3 has been reported to play an important role in tumor progression. However, whether MAP2K3 also affects ESCC remains to be determined. Method We used a CRISPR/Cas9 kinome screen to identify the genes related to ESCC cell survival. The MAP2K3 expression was detected in ESCC tissues by immunohistochemistry and westernblot. The function of MAP2K3 in ESCC was investigated using colony formation assay and Transwell assay in vivo and in vitro. RNA sequence was performed to verify its downstream signaling pathways. DNA binding of the gene promoter region was detected by chromatin immunoprecipitation.Result Downregulation of MAP2K3 was found in ESCC and correlated with clinically poor survival. MAP2K3 inhibited cell proliferation and invasion via the EGFR/STAT3 signaling pathway in ESCC cells. MAP2K3 suppressed STAT3 expression and activation by interacting with MDM2 to promote the ubiquitin proteasome degradation of STAT3. Furthermore, MAP2K3 was a downstream target of miR-19b-3p, which promoted ESCC tumorigenesis. STAT3 binds to the MIR19B promoter region to increase the expression of miR-19b-3p in ESCC cells. Conclusion In summary, our results demonstrated that the miR-19b-3p/MAP2K3/STAT3 feedback loop regulates tumorigenesis in ESCC and elucidate the potential of therapeutically targeting this pathway in ESCC.


2019 ◽  
Vol 19 (8) ◽  
pp. 1021-1028 ◽  
Author(s):  
Fanghua Qiu ◽  
Lifang Liu ◽  
Yu Lin ◽  
Zetian Yang ◽  
Feng Qiu

Background:Esophageal squamous cell carcinoma (ESCC), the most prevalent histologic subtype of esophageal cancer, is an aggressive malignancy with poor prognosis and a high incidence in the East. Corilagin, an active component present in Phyllanthus niruri L., has been shown to suppress tumor growth in various cancers. However, the effects of corilagin on ESCC and the mechanisms for its tumor suppressive function remain unknown.Methods:Cell proliferation was measured by Cell Counting Kit-8 assay and colony formation assays. Annexin V/PI double-staining was performed to assess cell apoptosis. Immunofluorescence staining and western blotting were used to evaluate the protein expression. A xenograft mice model was used to assess the in vivo antitumor effects of corilagin alone or in combination with cisplatin.Results:We for the first time showed that corilagin was effectively able to inhibit ESCC cell proliferation and induce cell apoptosis. Additionally, our results validated its antitumor effects in vivo using a xenograft mouse model. Mechanistically, we found that corilagin caused significant DNA damage in ESCC cells. We found that corilagin could significantly attenuate the expression of the E3 ubiquitin ligase RING finger protein 8 (RNF8) through ubiquitin-proteasome pathway, leading to the inability of DNA damage repair response and eventually causing cell apoptosis. Furthermore, we also showed that corilagin substantially enhanced the antitumor effects of chemotherapy drug cisplatin both in vitro and in vivo.Conclusion:Our results not only provided novel and previously unrecognized evidences for corilagin-induced tumor suppression through inducing DNA damage and targeting RNF8 in ESCC, but also highlighted that corilagin might serve as an adjunctive treatment to conventional chemotherapeutic drugs in ESCC patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jia-Huang Liu ◽  
Qi-Fei Wu ◽  
Jun-Ke Fu ◽  
Xiang-Ming Che ◽  
Hai-Jun Li

Obesity could increase the risk of esophageal squamous cell carcinoma (ESCC) and affect its growth and progression, but the mechanical links are unclear. The objective of the study was to explore the impact of obesity on ESCC growth and progression utilizing in vivo trials and cell experiments in vitro. Diet-induced obese and lean nude mice were inoculated with TE-1 cells, then studied for 4 weeks. Serum glucose, insulin, leptin, and visfatin levels were assayed. Sera of nude mice were obtained and then utilized to culture TE-1. MTT, migration and invasion assays, RT-PCR, and Western blotting were used to analyze endocrine effect of obesity on cell proliferation, migration, invasion, and related genes expression of TE-1. Obese nude mice bore larger tumor xenografts than lean animals, and were hyperglycemic and hyperinsulinemic with an elevated level of leptin and visfatin in sera, and also were accompanied by a fatty liver. As for the subcutaneous tumor xenograft model, tumors were more aggressive in obese nude mice than lean animals. Tumor weight correlated positively with mouse body weight, liver weight of mice, serum glucose, HOMA-IR, leptin, and visfatin. Obesity prompted significant TE-1 cell proliferation, migration, and invasion by endocrine mechanisms and impacted target genes. The expression of AMPK and p-AMPK protein decreased significantly ( P < 0.05 ); MMP9, total YAP, p-YAP, and nonphosphorylated YAP protein increased significantly ( P < 0.05 ) in the cells cultured with conditioned media and xenograft tumor from the obese group; the mRNA expression of AMPK decreased significantly ( P < 0.05 ); YAP and MMP9 mRNA expression increased significantly ( P < 0.05 ) in the cells exposed to conditioned media from the obese group. In conclusion, the altered adipokine milieu and metabolites in the context of obesity may promote ESCC growth in vivo; affect proliferation, migration, and invasion of ESCC cells in vitro; and regulate MMP9 and AMPK-YAP signaling pathway through complex effects including the endocrine effect.


Sign in / Sign up

Export Citation Format

Share Document