scholarly journals Dual-color fluorescence lifetime correlation spectroscopy to quantify protein-protein interactions in live cell

2011 ◽  
Vol 74 (8) ◽  
pp. 788-793 ◽  
Author(s):  
Sergi Padilla-Parra ◽  
Nicolas Audugé ◽  
Maïté Coppey-Moisan ◽  
Marc Tramier
Methods ◽  
2008 ◽  
Vol 46 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Geert van den Bogaart ◽  
Ilja Kusters ◽  
Jeanette Velásquez ◽  
Jacek T. Mika ◽  
Victor Krasnikov ◽  
...  

Author(s):  
Toru Komatsu ◽  
Yasuteru Urano

Abstract In this review, we present an overview of the recent advances in chemical toolboxes that are used to provide insights into ‘live’ protein functions in living systems. Protein functions are mediated by various factors inside of cells, such as protein−protein interactions, posttranslational modifications, and they are also subject to environmental factors such as pH, redox states and crowding conditions. Obtaining a true understanding of protein functions in living systems is therefore a considerably difficult task. Recent advances in research tools have allowed us to consider ‘live’ biochemistry as a valid approach to precisely understand how proteins function in a live cell context.


2021 ◽  
Author(s):  
Katherina Hemmen ◽  
Susobhan Choudhury ◽  
Mike Friedrich ◽  
Johannes Balkenhol ◽  
Felix Knote ◽  
...  

We present a protocol and workflow to perform live cell dual-color fluorescence crosscorrelation spectroscopy (FCCS) combined with Förster Resonance Energy transfer (FRET) to study membrane receptor dynamics in live cells using modern fluorescence labeling techniques. In dual-color FCCS, where the fluctuations in fluorescence intensity represents the dynamical "fingerprint" of the respective fluorescent biomolecule, we can probe co-diffusion or binding of the receptors. FRET, with its high sensitivity to molecular distances, serves as a well-known "nanoruler" to monitor intramolecular changes. Taken together, conformational changes and key parameters such as local receptor concentrations, and mobility constants become accessible in cellular settings. Quantitative fluorescence approaches are challenging in cells due to high noise levels and the vulnerable sample itself. We will show how to perform the experiments including the calibration steps. We use dual-color labeled β2-adrenergic receptor (β2AR) labeled (eGFP and SNAPtag-TAMRA). We will guide you step-by-step through the data analysis procedure using open-source software and provide templates that are easy to customize. Our guideline enables researchers to unravel molecular interactions of biomolecules in live cells in situ with high reliability despite the limited signal-to-noise levels in live cell experiments. The operational window of FRET and particularly FCCS at low concentrations allows quantitative analysis near-physiological conditions.


Sign in / Sign up

Export Citation Format

Share Document