Quantitative Study of Protein–Protein Interactions in Live Cell by Dual-Color Fluorescence Correlation Spectroscopy

Author(s):  
Sergi Padilla-Parra ◽  
Nicolas Audugé ◽  
Maïté Coppey-Moisan ◽  
Marc Tramier
Soft Matter ◽  
2019 ◽  
Vol 15 (33) ◽  
pp. 6660-6676 ◽  
Author(s):  
Jessica J. Hung ◽  
Wade F. Zeno ◽  
Amjad A. Chowdhury ◽  
Barton J. Dear ◽  
Kishan Ramachandran ◽  
...  

Measurement and interpretation of self-diffusion of a highly concentrated mAb with different formulations in context of viscosity and protein self-interactions.


2015 ◽  
Vol 26 (11) ◽  
pp. 2054-2066 ◽  
Author(s):  
Yinghua Guan ◽  
Matthias Meurer ◽  
Sarada Raghavan ◽  
Aleksander Rebane ◽  
Jake R. Lindquist ◽  
...  

We report an improved variant of mKeima, a monomeric long Stokes shift red fluorescent protein, hmKeima8.5. The increased intracellular brightness and large Stokes shift (∼180 nm) make it an excellent partner with teal fluorescent protein (mTFP1) for multiphoton, multicolor applications. Excitation of this pair by a single multiphoton excitation wavelength (MPE, 850 nm) yields well-separable emission peaks (∼120-nm separation). Using this pair, we measure homo- and hetero-oligomerization interactions in living cells via multiphoton excitation fluorescence correlation spectroscopy (MPE-FCS). Using tandem dimer proteins and small-molecule inducible dimerization domains, we demonstrate robust and quantitative detection of intracellular protein–protein interactions. We also use MPE-FCCS to detect drug–protein interactions in the intracellular environment using a Coumarin 343 (C343)-conjugated drug and hmKeima8.5 as a fluorescence pair. The mTFP1/hmKeima8.5 and C343/hmKeima8.5 combinations, together with our calibration constructs, provide a practical and broadly applicable toolbox for the investigation of molecular interactions in the cytoplasm of living cells.


Sign in / Sign up

Export Citation Format

Share Document