Comparative headspace analysis of fresh red coffee berries from different cultivated varieties of coffee trees

1996 ◽  
Vol 19 (5) ◽  
pp. 298-300 ◽  
Author(s):  
Frédéric Mathieu ◽  
Christian Malosse ◽  
Anne-hélène Cain ◽  
Brigitte Frérot
Keyword(s):  
Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3377 ◽  
Author(s):  
Mohamed A. Farag ◽  
Asmaa M. Otify ◽  
Aly M. El-Sayed ◽  
Camilia G. Michel ◽  
Shaimaa A. ElShebiney ◽  
...  

Interest in developing coffee substitutes is on the rise, to minimizing its health side effects. In the Middle East, date palm (Phoenix dactylifera L.) pits are often used as a coffee substitute post roasting. In this study, commercially-roasted date pit products, along with unroasted and home-prepared roasted date pits, were subjected to analyses for their metabolite composition, and neuropharmacological evaluation in mice. Headspace SPME-GCMS and GCMS post silylation were employed for characterizing its volatile and non-volatile metabolite profile. For comparison to roasted coffee, coffee product was also included. There is evidence that some commercial date pit products appear to contain undeclared additives. SPME headspace analysis revealed the abundance of furans, pyrans, terpenoids and sulfur compounds in roasted date pits, whereas pyrroles and caffeine were absent. GCMS-post silylation employed for primary metabolite profiling revealed fatty acids’ enrichment in roasted pits versus sugars’ abundance in coffee. Biological investigations affirmed that date pit showed safer margin than coffee from its LD50, albeit it exhibits no CNS stimulant properties. This study provides the first insight into the roasting impact on the date pit through its metabolome and its neuropharmacological aspects to rationalize its use as a coffee substitute.


Analytica ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 38-49
Author(s):  
Ettore Guerriero ◽  
Massimo Iorizzo ◽  
Marina Cerasa ◽  
Ivan Notardonato ◽  
Bruno Testa ◽  
...  

The paper would like to show a direct injection into GC-MS/QqQ for the determination of secondary aromas in white wine samples fermented in two different ways. The procedure has been compared with more traditional methods used in this field, i.e., headspace analysis and liquid–liquid extraction. The application of such direct injection, for the first time in the literature, allows us to analyze Volatile Organic Compounds (VOCs) in the range 0.1–100 µg mL−1, with Limits of Detection (LODs) and Limits of Quantification (LOQs) between 0.01–0.05 µg mL−1 and 0.03–0.09 µg mL−1, respectively, intraday and interday below 5.6% and 8.5%, respectively, and recoveries above 92% at two different fortification levels. The procedure has been applied to real wine samples: it evidences how the fermentation in wood (cherry) barrel yields higher VOC levels than ones in wine fermented in steel tank, causing production of different secondary aromas and different relative flavors.


2021 ◽  
Vol 11 (13) ◽  
pp. 6089
Author(s):  
Hamza Gadhoumi ◽  
Maria Gullo ◽  
Luciana De Vero ◽  
Enriqueta Martinez-Rojas ◽  
Moufida Saidani Tounsi ◽  
...  

Functional beverages obtained using medicinal plants and fermented with lactic acid bacteria are gaining much interest from the scientific community, driven by the growing demand for food and beverages with beneficial properties. In this work, three different batches of medicinal plants and organic sugarcane molasses, named FB-lc, FB-sp and FB-lcsp, were prepared and fermented by using Lactobacillus acidophilus ATCC 43121, Bifidobacterium breve B632 and a mix of both strains’ culture, respectively. The three fermented beverages revealed a high level of polyphenols (expressed as gallic acid equivalent), ranging from 182.50 to 315.62 µg/mL. The highest content of flavonoids (152.13 µg quercetin equivalent/mL) and tannins (93.602 µg catechin equivalent/mL) was detected in FB-lcsp trial. The IR spectroscopy analysis showed a decrease in sugar (pyranose forms, D-glucopyranose and rhamnosides). In addition, the aromatic compounds of the fermented beverages, detected by GC-MS headspace analysis, showed twenty-four interesting volatile compounds, which could give positive aroma attributes to the flavor of the beverages. The highest antioxidant activity was observed in the beverage obtained by the mix culture strains. Accordingly, the production of these beverages can be further investigated for considering their well-being effects on human health.


2018 ◽  
Vol 63 (1) ◽  
pp. 124-130 ◽  
Author(s):  
Ryan F LeBouf ◽  
Brie Hawley ◽  
Kristin J Cummings

Abstract Objectives Workers using flavoring formulations containing diacetyl and 2,3-pentanedione may be at risk of inhalational exposure, as these volatile hazardous chemicals are emitted from the bulk material, especially at elevated temperatures. However, flavoring formulations that contain diacetyl and 2,3-pentanedione might not list these ingredients because they are generally recognized as safe to ingest, may be part of a proprietary mixture deemed a trade secret, or may not be required to be listed if they are present at <1% composition. The objective of this study was to investigate whether potential inhalational hazards present in flavoring samples were reported as chemical ingredients on their corresponding safety data sheets (SDSs). Methods A convenience sample of 26 bulk liquid flavorings obtained from two coffee roasting and packaging facilities in the USA was analyzed for 20 volatile organic chemicals present in the headspaces of vials containing flavoring liquids using gas chromatography-mass spectrometry. Flavoring samples were included in the study if headspace analysis results and SDSs were available. Flavoring samples included hazelnut, French vanilla, amaretto, chocolate, and caramel as well as some flavoring mixtures containing added fruit flavors such as cherry and raspberry. The presence of a chemical in the flavoring formulation was then compared to the ingredient list on the SDSs. Results All the flavoring SDSs contained trade secret designations. None of the SDSs listed diacetyl or 2,3-pentanedione. Headspace analyte concentrations revealed that diacetyl was present in 21 of 26 samples (81%) with a maximum concentration of 5.84 × 104 µg m−3 in flavor 18 (caramel). 2,3-Pentanedione was present in 15 flavors (58%) with a maximum concentration of 3.79 × 105 µg m−3 in flavor 24 (oatmeal cookies). Conclusions A majority of the flavorings tested had diacetyl, 2,3-pentanedione, or both as volatile constituents in the headspace. These chemicals were not listed on the SDSs, but inclusion of diacetyl and 2,3-pentanedione on SDSs would serve to protect downstream users from unrecognized exposure and potential respiratory disease. The headspace technique presented here is a viable tool to rapidly screen for volatile hazardous chemicals that may be present in flavoring formulations. Facilities that use flavorings should be aware that constituents in flavorings may present a potential inhalational hazard even if not identified as such by the SDS. A precautionary approach is warranted when working with flavorings, including exposure monitoring and effective exposure control strategies such as containment and local exhaust ventilation.


Sign in / Sign up

Export Citation Format

Share Document