Spectroscopic characterization, DFT studies, molecular docking and cytotoxic evaluation of 4‐nitro ‐indole‐3‐carboxaldehyde: A potent lung cancer agent

2020 ◽  
Vol 34 (1) ◽  
Author(s):  
S. Christopher Jeyaseelan ◽  
A. Milton Franklin Benial
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoling Li ◽  
Baixin Lin ◽  
Zhiping Lin ◽  
Yucui Ma ◽  
Qu Wang ◽  
...  

AbstractFucosterol, a sterol isolated from brown algae, has been demonstrated to have anti-cancer properties. However, the effects and underlying molecular mechanism of fucosterol on non-small cell lung cancer remain to be elucidated. In this study, the corresponding targets of fucosterol were obtained from PharmMapper, and NSCLC related targets were gathered from the GeneCards database, and the candidate targets of fucosterol-treated NSCLC were predicted. The mechanism of fucosterol against NSCLC was identified in DAVID6.8 by enrichment analysis of GO and KEGG, and protein–protein interaction data were collected from STRING database. The hub gene GRB2 was further screened out and verified by molecular docking. Moreover, the relationship of GRB2 expression and immune infiltrates were analyzed by the TIMER database. The results of network pharmacology suggest that fucosterol acts against candidate targets, such as MAPK1, EGFR, GRB2, IGF2, MAPK8, and SRC, which regulate biological processes including negative regulation of the apoptotic process, peptidyl-tyrosine phosphorylation, positive regulation of cell proliferation. The Raf/MEK/ERK signaling pathway initiated by GRB2 showed to be significant in treating NSCLC. In conclusion, our study indicates that fucosterol may suppress NSCLC progression by targeting GRB2 activated the Raf/MEK/ERK signaling pathway, which laying a theoretical foundation for further research and providing scientific support for the development of new drugs.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2084
Author(s):  
Mingkun Li ◽  
Heping Li ◽  
Hongli Liu ◽  
Zhiming Zou ◽  
Chaoyu Xie

The development of natural biomass materials with excellent properties is an attractive way to improve the application range of natural polysaccharides. Bagasse Xylan (BX) is a natural polysaccharide with various biological activities, such as antitumor, antioxidant, etc. Its physic-chemical and biological properties can be improved by functionalization. For this purpose, a novel glycidyl metharcylate/phytic acid based on a BX composite derivative was synthesized by a free radical polymerization technique with glycidyl metharcylate (GMA; GMABX) and further esterification with phytic acid (PA; GMABX-PA) in ionic liquid. The effects of the reaction conditions (i.e., temperature, time, initiator concentration, catalyst concentration, GMA concentration, PA concentration, mass of ionic liquid) on grafting rate(G), conversion rate(C) and degree of substitution(DS) are discussed. The structure of the composite material structure was confirmed by FTIR, 1H NMR and XRD. SEM confirmed the particle morphology of the composite derivative. The thermal stability of GMABX-PA was determined by TG-DTG. Molecular docking was further performed to study the combination mode of the GMABX-PA into the active site of two lung cancer proteins (5XNV, 2EB2) and a blood cancer protein (2M6N). In addition, tumor cell proliferation inhibition assays for BX, GMABX-PA were carried out using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetraz -olium bromide (MTT) method. The results showed that various reaction conditions exhibited favorable gradient curves, and that a maximum G of 56% for the graft copolymerization and a maximum DS of 0.267 can be achieved. The thermal stability was significantly improved, as demonstrated by the fact that there was still 60% residual at 800 °C. The molecular docking software generated satisfactory results with regard to the evaluated binding energy and combining sites. The inhibition ratio of GMABX-PA on NCI-H460 (lung cancer cells) reached 29.68% ± 4.45%, which is five times higher than that of BX. Therefore, the material was shown to be a potential candidate for biomedical applications as well as for use as a heat resistant material.


Life Sciences ◽  
2021 ◽  
Vol 270 ◽  
pp. 119105
Author(s):  
Chong Yuan ◽  
Meng-Heng Wang ◽  
Fei Wang ◽  
Peng-Yu Chen ◽  
Xin-Ge Ke ◽  
...  

2021 ◽  
Vol 1238 ◽  
pp. 130389
Author(s):  
Farzane Pazoki ◽  
Razieh Esfandiarpour ◽  
Fatemeh Mohsenzadeh ◽  
Fahimeh Mohammadpanah ◽  
Akbar Heydari

Sign in / Sign up

Export Citation Format

Share Document