Assessing 20th century climate-vegetation feedbacks of land-use change and natural vegetation dynamics in a fully coupled vegetation-climate model

2010 ◽  
Vol 30 (13) ◽  
pp. 2055-2065 ◽  
Author(s):  
Bart J. Strengers ◽  
Christoph Müller ◽  
Michiel Schaeffer ◽  
Reindert J. Haarsma ◽  
Camiel Severijns ◽  
...  
2008 ◽  
Vol 12 (1) ◽  
pp. 159-175 ◽  
Author(s):  
P. J. Ward ◽  
H. Renssen ◽  
J. C. J. H. Aerts ◽  
R. T. van Balen ◽  
J. Vandenberghe

Abstract. In recent years the frequency of high-flow events on the Meuse (northwest Europe) has been relatively great, and flooding has become a major research theme. To date, research has focused on observed discharge records of the last century and simulations of the coming century. However, it is difficult to delineate changes caused by human activities (land use change and greenhouse gas emissions) and natural fluctuations on these timescales. To address this problem we coupled a climate model (ECBilt-CLIO-VECODE) and a hydrological model (STREAM) to simulate daily Meuse discharge in two time-slices: 4000–3000 BP (natural situation), and 1000–2000 AD (includes anthropogenic influence). For 4000–3000 BP the basin is assumed to be almost fully forested; for 1000–2000 AD we reconstructed land use based on historical sources. For 1000–2000 AD the simulated mean annual discharge (260.9 m3 s−1) is significantly higher than for 4000–3000 BP (244.8 m3 s−1), and the frequency of large high-flow events (discharge >3000 m3 s−1) is higher (recurrence time decreases from 77 to 65 years). On a millennial timescale almost all of this increase can be ascribed to land use changes (especially deforestation); the effects of climatic change are insignificant. For the 20th Century, the simulated mean discharge (270.0 m3 s−1) is higher than in any other century studied, and is ca. 2.5% higher than in the 19th Century (despite an increase in evapotranspiration). Furthermore, the recurrence time of large high-flow events is almost twice as short as under natural conditions (recurrence time decreases from 77 to 40 years). On this timescale climate change (strong increase in annual and winter precipitation) overwhelmed land use change as the dominant forcing mechanism.


2007 ◽  
Vol 4 (4) ◽  
pp. 2521-2560 ◽  
Author(s):  
P. J. Ward ◽  
H. Renssen ◽  
J. C. J. H. Aerts ◽  
R. T. van Balen ◽  
J. Vandenberghe

Abstract. In recent years the frequency of high-flow events on the Meuse (northwest Europe) has been relatively great, and flooding has become a major research theme. To date, research has focused on observed discharge records of the last century and simulations of the coming century. However, it is difficult to delineate changes caused by human activities (land use change and greenhouse gas emissions) and natural fluctuations on these timescales. To address this problem we coupled a climate model (ECBilt-CLIO-VECODE) and a hydrological model (STREAM) to simulate daily Meuse discharge in two time-slices: 4000–3000 BP (natural situation), and 1000–2000 AD (includes anthropogenic influence). For 4000–3000 BP the basin is assumed to be almost fully forested; for 1000–2000 AD we reconstructed land use based on historical sources. For 1000–2000 AD the simulated mean annual discharge (260.9 m³ s−1) is significantly higher than for 4000–3000 BP (244.8 m³ s−1), and the frequency of large high-flow events (discharge >3000 m³ s−1) is higher (recurrence time decreases from 77 to 65 years). On a millennial timescale almost all of this increase can be ascribed to land use changes (especially deforestation); the effects of climatic change are insignificant. For the 20th Century, the simulated mean discharge (270.0 m³ s−1) is higher than in any other century studied, and is ca. 2.5% higher than in the 19th Century (despite an increase in evapotranspiration). Furthermore, the recurrence time of large high-flow events is almost twice as short as under natural conditions (recurrence time decreases from 77 to 40 years). On this timescale climate change (strong increase in annual and winter precipitation) overwhelmed land use change as the dominant forcing mechanism.


The Holocene ◽  
2020 ◽  
Vol 30 (8) ◽  
pp. 1101-1114 ◽  
Author(s):  
Ricardo Moreno-Gonzalez ◽  
Thomas Giesecke ◽  
Sonia L Fontana

Land-use change in the form of extensive Pinus plantations is currently altering the natural vegetation cover at the forest–steppe ecotone in northern Patagonia. Providing recommendations for conservation efforts, with respect to this recent and earlier land-use changes, requires a longer time perspective. Using pollen analysis, we investigated to what degree the colonization of the area by Euro-American settlers changed the forest composition and the vegetation cover, and to explore the spread of the European weed Rumex acetosella. This study is based on short sediment cores from six lakes in the Araucaria araucana forest region, across the vegetation gradient from the forest to the steppe. Results document that although Araucaria araucana has been extensively logged elsewhere, near the investigated sites, populations were rather stable and other elements of the vegetation changed little with the initiation of Euro-American settlements. A reduction of Nothofagus dombeyi-type pollen occurred at some sites presumably due to logging Nothofagus dombeyi trees, while toward the steppe, Nothofagus antarctica shrubs may have been removed for pasture. The appearance of Rumex acetosella pollen is consistent with the initiation of land use by Euro-American settlers in all cores, probably indicating the onset of animal farming. The rise of the Rumex acetosella pollen curve during the 1950s marks more recent land-use change. These observations indicate that the spread and local expansion of the weed requires disturbance. Overall, the study shows that the initial colonization of the area by Euro-American settlers had little effect on the natural vegetation structure, while developments since the 1950s are strongly altering the natural vegetation cover.


2019 ◽  
Vol 12 (1) ◽  
pp. 179-193 ◽  
Author(s):  
Chantelle Burton ◽  
Richard Betts ◽  
Manoel Cardoso ◽  
Ted R. Feldpausch ◽  
Anna Harper ◽  
...  

Abstract. Disturbance of vegetation is a critical component of land cover, but is generally poorly constrained in land surface and carbon cycle models. In particular, land-use change and fire can be treated as large-scale disturbances without full representation of their underlying complexities and interactions. Here we describe developments to the land surface model JULES (Joint UK Land Environment Simulator) to represent land-use change and fire as distinct processes which interact with simulated vegetation dynamics. We couple the fire model INFERNO (INteractive Fire and Emission algoRithm for Natural envirOnments) to dynamic vegetation within JULES and use the HYDE (History Database of the Global Environment) land cover dataset to analyse the impact of land-use change on the simulation of present day vegetation. We evaluate the inclusion of land use and fire disturbance against standard benchmarks. Using the Manhattan metric, results show improved simulation of vegetation cover across all observed datasets. Overall, disturbance improves the simulation of vegetation cover by 35 % compared to vegetation continuous field (VCF) observations from MODIS and 13 % compared to the Climate Change Initiative (CCI) from the ESA. Biases in grass extent are reduced from −66 % to 13 %. Total woody cover improves by 55 % compared to VCF and 20 % compared to CCI from a reduction in forest extent in the tropics, although simulated tree cover is now too sparse in some areas. Explicitly modelling fire and land use generally decreases tree and shrub cover and increases grasses. The results show that the disturbances provide important contributions to the realistic modelling of vegetation on a global scale, although in some areas fire and land use together result in too much disturbance. This work provides a substantial contribution towards representing the full complexity and interactions between land-use change and fire that could be used in Earth system models.


2014 ◽  
Vol 14 (2) ◽  
pp. 1011-1024 ◽  
Author(s):  
O. J. Squire ◽  
A. T. Archibald ◽  
N. L. Abraham ◽  
D. J. Beerling ◽  
C. N. Hewitt ◽  
...  

Abstract. Over the 21st century, changes in CO2 levels, climate and land use are expected to alter the global distribution of vegetation, leading to changes in trace gas emissions from plants, including, importantly, the emissions of isoprene. This, combined with changes in anthropogenic emissions, has the potential to impact tropospheric ozone levels, which above a certain level are harmful to animals and vegetation. In this study we use a biogenic emissions model following the empirical parameterisation of the MEGAN model, with vegetation distributions calculated by the Sheffield Dynamic Global Vegetation Model (SDGVM) to explore a range of potential future (2095) changes in isoprene emissions caused by changes in climate (including natural land use changes), land use, and the inhibition of isoprene emissions by CO2. From the present-day (2000) value of 467 Tg C yr−1, we find that the combined impact of these factors could cause a net decrease in isoprene emissions of 259 Tg C yr−1 (55%) with individual contributions of +78 Tg C yr−1 (climate change), −190 Tg C yr−1 (land use) and −147 Tg C yr−1 (CO2 inhibition). Using these isoprene emissions and changes in anthropogenic emissions, a series of integrations is conducted with the UM-UKCA chemistry-climate model with the aim of examining changes in ozone over the 21st century. Globally, all combined future changes cause a decrease in the tropospheric ozone burden of 27 Tg (7%) from 379 Tg in the present-day. At the surface, decreases in ozone of 6–10 ppb are calculated over the oceans and developed northern hemispheric regions, due to reduced NOx transport by PAN and reductions in NOx emissions in these areas respectively. Increases of 4–6 ppb are calculated in the continental tropics due to cropland expansion in these regions, increased CO2 inhibition of isoprene emissions, and higher temperatures due to climate change. These effects outweigh the decreases in tropical ozone caused by increased tropical isoprene emissions with climate change. Our land use change scenario consists of cropland expansion, which is most pronounced in the tropics. The tropics are also where land use change causes the greatest increases in ozone. As such there is potential for increased crop exposure to harmful levels of ozone. However, we find that these ozone increases are still not large enough to raise ozone to such damaging levels.


Irriga ◽  
2015 ◽  
Vol 1 (2) ◽  
pp. 01-10 ◽  
Author(s):  
Antônio Heriberto De Castro Teixeira ◽  
Janice Freitas Leivas ◽  
Ricardo Guimarães Andrade ◽  
Fernando Braz Tangerino Hernandez

Water productivity assessments with Landsat 8 images in the Nilo Coelho irrigation scheme  ANTÔNIO HERIBERTO DE CASTRO TEIXEIRA1; JANICE FREITAS LEIVAS1; RICARDO GUIMARÃES ANDRADE1 E FERNANDO BRAZ TANGERINO HERNANDEZ2 ¹Pesquisador doutor, grupo de Geociências, Embrapa Monitoramento por Satélite, CNPM, [email protected], [email protected], [email protected]²Professor doutor, Laboratório de Hidráulica, Universidade Estadual Paulista, UNESP, [email protected]  1        Abstract The Nilo Coelho (NC) irrigation scheme, located in the Brazilian semi-arid region, is an important irrigated agricultural area. Land use change effects on actual evapotranspiration (ET), biomass production (BIO) and water productivity (WP) were quantified with Landsat 8 images and weather data in this scheme covering different thermohydrological conditions. The SAFER algorithm was used for ET acquirements while the Monteith’s radiation model was applied to retrieve BIO.  For classifying irrigated crops and natural vegetation, the SUREAL model was used with a satellite image representing the driest period of the year. The average values for ET, BIO and WP in irrigated crops, ranged, respectively, from 1.6 ± 1.9 to 4.2 ± 1.9 mm day-1; 59 ± 86 to 146 ± 91 kg ha-1 day-1;and 2.0 ± 1.5 to 3.0 ± 1.2 kg m-3. The corresponding ranges for natural vegetation (“Caatinga”) were from 1.2 ± 1.8 to 2.6 ± 1.8 mm day-1; 43 ± 78 to 76 ± 78 kg ha-1 day-1; and 1.6 ± 1.4 to 2.7 ± 1.1 kg m-3. The incremental values, which represent the effects of the replacement of natural vegetation by irrigated crops, were 40, 54 e 23%, for ET, BIO e WP, respectively. Keywords: evapotranspiration, biomass production, land use change  TEIXEIRA, A.H. de C.; LEIVAS, J.F.; ANDRADE, R.G.; HERNANDEZ, F.B.T.Análises da produtividade da água com imagens Landsat 8 no perímetro de irrigação Nilo Coelho  2        resumo O perímetro de irrigação Nilo Coelho (NC), localizado na região semiárida do Brasil, é uma importante área de agricultura irrigada. Os efeitos da mudança de uso da terra na evapotranspiração atual (ET), na produção de biomassa (BIO) e na produtividade da água (PA) foram quantificados com imagens Landsat 8 e dados climáticos neste perímetro cobrindo diferentes condições termo hidrológicas. O algoritmo SAFER foi usado para a obtenção da ET enquanto que o modelo da radiação de Monteith foi aplicado para a estnimativa da BIO. Para classificação em culturas irrigadas e vegetação natural o modelo SUREAL foi usado na imagem representativa do período mais seco do ano. Os valores médios da ET, BIO e PA nas culturas irrigadas variaram respectivamente de 1,6 ± 1,9 a 4,2 ± 1,9 mm dia-1; 59 ± 86 a 146 ± 91 kg ha-1 dia-1;e 2,0 ± 1,5 a 3,0 ± 1.2 kg m-3. Os valores correspondentes para vegetação natural (“Caatinga”) foram de 1,2 ± 1,8 a 2,6 ± 1,8 mm dia-1; 43 ± 78 a 76 ± 78 kg ha-1 dia-1; e 1,6 ± 1,4 a 2,7 ± 1,1 kg m-3. Os valores incrementais, representativos dos efeitos da substituição da vegetação natural por culturas irrigadas foram de 40, 54 e 23%, para respectivamente ET, BIO e PA. Palavras-chave: Evapotranspiração, produção de biomassa, mudança de uso da terra.


Sign in / Sign up

Export Citation Format

Share Document