Coupling Simulations of Human Driven Land Use Change with Natural Vegetation Dynamics

Author(s):  
Aashis Lamsal ◽  
Zhihua Liu ◽  
Michael Wimberly
2010 ◽  
Vol 30 (13) ◽  
pp. 2055-2065 ◽  
Author(s):  
Bart J. Strengers ◽  
Christoph Müller ◽  
Michiel Schaeffer ◽  
Reindert J. Haarsma ◽  
Camiel Severijns ◽  
...  

The Holocene ◽  
2020 ◽  
Vol 30 (8) ◽  
pp. 1101-1114 ◽  
Author(s):  
Ricardo Moreno-Gonzalez ◽  
Thomas Giesecke ◽  
Sonia L Fontana

Land-use change in the form of extensive Pinus plantations is currently altering the natural vegetation cover at the forest–steppe ecotone in northern Patagonia. Providing recommendations for conservation efforts, with respect to this recent and earlier land-use changes, requires a longer time perspective. Using pollen analysis, we investigated to what degree the colonization of the area by Euro-American settlers changed the forest composition and the vegetation cover, and to explore the spread of the European weed Rumex acetosella. This study is based on short sediment cores from six lakes in the Araucaria araucana forest region, across the vegetation gradient from the forest to the steppe. Results document that although Araucaria araucana has been extensively logged elsewhere, near the investigated sites, populations were rather stable and other elements of the vegetation changed little with the initiation of Euro-American settlements. A reduction of Nothofagus dombeyi-type pollen occurred at some sites presumably due to logging Nothofagus dombeyi trees, while toward the steppe, Nothofagus antarctica shrubs may have been removed for pasture. The appearance of Rumex acetosella pollen is consistent with the initiation of land use by Euro-American settlers in all cores, probably indicating the onset of animal farming. The rise of the Rumex acetosella pollen curve during the 1950s marks more recent land-use change. These observations indicate that the spread and local expansion of the weed requires disturbance. Overall, the study shows that the initial colonization of the area by Euro-American settlers had little effect on the natural vegetation structure, while developments since the 1950s are strongly altering the natural vegetation cover.


2019 ◽  
Vol 12 (1) ◽  
pp. 179-193 ◽  
Author(s):  
Chantelle Burton ◽  
Richard Betts ◽  
Manoel Cardoso ◽  
Ted R. Feldpausch ◽  
Anna Harper ◽  
...  

Abstract. Disturbance of vegetation is a critical component of land cover, but is generally poorly constrained in land surface and carbon cycle models. In particular, land-use change and fire can be treated as large-scale disturbances without full representation of their underlying complexities and interactions. Here we describe developments to the land surface model JULES (Joint UK Land Environment Simulator) to represent land-use change and fire as distinct processes which interact with simulated vegetation dynamics. We couple the fire model INFERNO (INteractive Fire and Emission algoRithm for Natural envirOnments) to dynamic vegetation within JULES and use the HYDE (History Database of the Global Environment) land cover dataset to analyse the impact of land-use change on the simulation of present day vegetation. We evaluate the inclusion of land use and fire disturbance against standard benchmarks. Using the Manhattan metric, results show improved simulation of vegetation cover across all observed datasets. Overall, disturbance improves the simulation of vegetation cover by 35 % compared to vegetation continuous field (VCF) observations from MODIS and 13 % compared to the Climate Change Initiative (CCI) from the ESA. Biases in grass extent are reduced from −66 % to 13 %. Total woody cover improves by 55 % compared to VCF and 20 % compared to CCI from a reduction in forest extent in the tropics, although simulated tree cover is now too sparse in some areas. Explicitly modelling fire and land use generally decreases tree and shrub cover and increases grasses. The results show that the disturbances provide important contributions to the realistic modelling of vegetation on a global scale, although in some areas fire and land use together result in too much disturbance. This work provides a substantial contribution towards representing the full complexity and interactions between land-use change and fire that could be used in Earth system models.


Irriga ◽  
2015 ◽  
Vol 1 (2) ◽  
pp. 01-10 ◽  
Author(s):  
Antônio Heriberto De Castro Teixeira ◽  
Janice Freitas Leivas ◽  
Ricardo Guimarães Andrade ◽  
Fernando Braz Tangerino Hernandez

Water productivity assessments with Landsat 8 images in the Nilo Coelho irrigation scheme  ANTÔNIO HERIBERTO DE CASTRO TEIXEIRA1; JANICE FREITAS LEIVAS1; RICARDO GUIMARÃES ANDRADE1 E FERNANDO BRAZ TANGERINO HERNANDEZ2 ¹Pesquisador doutor, grupo de Geociências, Embrapa Monitoramento por Satélite, CNPM, [email protected], [email protected], [email protected]²Professor doutor, Laboratório de Hidráulica, Universidade Estadual Paulista, UNESP, [email protected]  1        Abstract The Nilo Coelho (NC) irrigation scheme, located in the Brazilian semi-arid region, is an important irrigated agricultural area. Land use change effects on actual evapotranspiration (ET), biomass production (BIO) and water productivity (WP) were quantified with Landsat 8 images and weather data in this scheme covering different thermohydrological conditions. The SAFER algorithm was used for ET acquirements while the Monteith’s radiation model was applied to retrieve BIO.  For classifying irrigated crops and natural vegetation, the SUREAL model was used with a satellite image representing the driest period of the year. The average values for ET, BIO and WP in irrigated crops, ranged, respectively, from 1.6 ± 1.9 to 4.2 ± 1.9 mm day-1; 59 ± 86 to 146 ± 91 kg ha-1 day-1;and 2.0 ± 1.5 to 3.0 ± 1.2 kg m-3. The corresponding ranges for natural vegetation (“Caatinga”) were from 1.2 ± 1.8 to 2.6 ± 1.8 mm day-1; 43 ± 78 to 76 ± 78 kg ha-1 day-1; and 1.6 ± 1.4 to 2.7 ± 1.1 kg m-3. The incremental values, which represent the effects of the replacement of natural vegetation by irrigated crops, were 40, 54 e 23%, for ET, BIO e WP, respectively. Keywords: evapotranspiration, biomass production, land use change  TEIXEIRA, A.H. de C.; LEIVAS, J.F.; ANDRADE, R.G.; HERNANDEZ, F.B.T.Análises da produtividade da água com imagens Landsat 8 no perímetro de irrigação Nilo Coelho  2        resumo O perímetro de irrigação Nilo Coelho (NC), localizado na região semiárida do Brasil, é uma importante área de agricultura irrigada. Os efeitos da mudança de uso da terra na evapotranspiração atual (ET), na produção de biomassa (BIO) e na produtividade da água (PA) foram quantificados com imagens Landsat 8 e dados climáticos neste perímetro cobrindo diferentes condições termo hidrológicas. O algoritmo SAFER foi usado para a obtenção da ET enquanto que o modelo da radiação de Monteith foi aplicado para a estnimativa da BIO. Para classificação em culturas irrigadas e vegetação natural o modelo SUREAL foi usado na imagem representativa do período mais seco do ano. Os valores médios da ET, BIO e PA nas culturas irrigadas variaram respectivamente de 1,6 ± 1,9 a 4,2 ± 1,9 mm dia-1; 59 ± 86 a 146 ± 91 kg ha-1 dia-1;e 2,0 ± 1,5 a 3,0 ± 1.2 kg m-3. Os valores correspondentes para vegetação natural (“Caatinga”) foram de 1,2 ± 1,8 a 2,6 ± 1,8 mm dia-1; 43 ± 78 a 76 ± 78 kg ha-1 dia-1; e 1,6 ± 1,4 a 2,7 ± 1,1 kg m-3. Os valores incrementais, representativos dos efeitos da substituição da vegetação natural por culturas irrigadas foram de 40, 54 e 23%, para respectivamente ET, BIO e PA. Palavras-chave: Evapotranspiração, produção de biomassa, mudança de uso da terra.


2021 ◽  
Author(s):  
Lucy W. Ngatia ◽  
Daniel Moriasi ◽  
Johnny M. Grace III ◽  
Riqiang Fu ◽  
Cassel S. Gardner ◽  
...  

Soil organic carbon (SOC) is a major indicator of soil health. Globally, soil contains approximately 2344 Gt of organic carbon (OC), which is the largest terrestrial pool of OC. Through plant growth, soil health is connected with the health of humans, animals, and ecosystems. Provides ecosystem services which include climate regulation, water supplies and regulation, nutrient cycling, erosion protection and enhancement of biodiversity. Global increase in land use change from natural vegetation to agricultural land has been documented as a result of intensification of agricultural practices in response to an increasing human population. Consequently, these changes have resulted in depletion of SOC stock, thereby negatively affecting agricultural productivity and provision of ecosystem services. This necessitates the need to consider technological options that promote retention of SOC stocks. Options to enhance SOC include; no-tillage/conservation agriculture, irrigation, increasing below-ground inputs, organic amendments, and integrated, and diverse cropping/farming systems. In addition, land use conversion from cropland to its natural vegetation improves soil C stocks, highlighting the importance of increasing agricultural production per unit land instead of expanding agricultural land to natural areas.


2013 ◽  
Vol 22 (2) ◽  
pp. 107 ◽  
Author(s):  
J.-M. Grégoire ◽  
H. D. Eva ◽  
A. S. Belward ◽  
I. Palumbo ◽  
D. Simonetti ◽  
...  

As Africa contributes some 64% of the global extent of area burnt annually, uncertainty concerning fire activity in the continent is an important issue. In this study, we quantify the effect of land-cover conversion from natural vegetation to agriculture on burnt area extent. This is based on the comparison of contemporary fire distribution in 189 protected areas where agricultural activity is largely absent with that occurring in the surrounding regions, where agriculture is practised. Results indicate a decrease in the total area burnt annually in Africa linked to the loss of natural vegetation communities due to expanding agricultural lands. Land-use change within the savanna vegetation units of Africa has led to a decrease in burnt area in the order of ~8×105hayear–1, which corresponds to 0.4% of the area currently burnt in Africa. The resulting decrease in the quantity of biomass burnt in any year would be between 3.4 and 9Tg, depending on the estimates of aboveground fuel biomass. Deforestation in the humid tropical forest domains may act as a small counterbalance to the trend of decreasing burnt area linked to land-use change in the short term.


Sign in / Sign up

Export Citation Format

Share Document