The impact of north tropical Atlantic sea surface temperature anomalies in the ensuing spring of El Niño on the tropical Indian Ocean and Northwest Pacific

2020 ◽  
Vol 40 (11) ◽  
pp. 4978-4991
Author(s):  
Jing Ma ◽  
Weibang He ◽  
Zhehan Chen ◽  
Yihang Fu ◽  
Jiayue Yin
2015 ◽  
Vol 28 (8) ◽  
pp. 3122-3132 ◽  
Author(s):  
Ming Luo ◽  
Yee Leung ◽  
Yu Zhou ◽  
Wei Zhang

Abstract Temporal scaling properties of the monthly sea surface temperature anomaly (SSTA) in global ocean basins are examined by the power spectrum and detrended fluctuation analysis methods. Analysis results show that scaling behaviors of the SSTA in most ocean basins (e.g., global average, South Pacific, eastern and western tropical Pacific, tropical Indian Ocean, and tropical Atlantic) are separated into two distinct regimes by a common crossover time scale of 52 months (i.e., 4.3 yr). It is suggested that this crossover is modulated by the El Niño/La Niña–Southern Oscillation (ENSO), indicating different scaling properties at different time scales. The SSTA time series is nonstationary and antipersistent at the small scale (i.e., crossover). It is, however, stationary and long range correlated at the large scale (i.e., crossover). For both time scales, scaling behaviors of SSTA are heterogeneously distributed over the ocean, and the fluctuation of SSTA intensifies with decreasing latitude. Stronger fluctuation appears over the tropical regions (e.g., central-eastern tropical Pacific, tropical Atlantic, tropical Indian Ocean, and South China Sea), which are directly or indirectly linked to ENSO. Weaker fluctuation and stronger persistence are found in mid- and high-latitude areas, coinciding with the “reemergence” areas.


2021 ◽  
Vol 4 ◽  
pp. 99-111
Author(s):  
Y.A Pavroz . ◽  

An attempt is made to develop a method for long-term forecasting of the ice breakup time for the Vyatka River basin, to identify the impact of the distribution of sea surface temperature and geopotential height in the informative regions at the levels H100 and H500 over the Northern Hemisphere on the river ice breakup. The location and boundaries of the informative regions in the fields of H100 and H500 were revealed by the discriminant analysis, the EOF expansion coefficients of the fields of anomalies of monthly mean values of H100 and H500 for January and February and the anomalies of monthly mean sea surface temperature in the North Atlantic and Northwest Pacific were used as potential predictors. The stepwise regression analysis allowed deriving good and satisfactory (S/σ = 0.45–0.73) complex prognostic equations for forecasting the ice breakup time for the Vyatka River basin. The essential influence of H100 and H500 geopotential height fields and the spatial distribution of sea surface temperature anomalies in the North Atlantic and Northwest Pacific in January and February on the river ice breakup time is revealed. It is proposed to improve the method by considering the impact of air temperature, maximum ice thickness per winter, and other indirect characteristics on the processes of river ice breakup in the Vyatka River basin. Keywords: ice regime, long-range forecast, river ice breakup, expansion coefficients, geopotential height fields, spring ice phenomena, energy-active zones of the oceans, complex prognostic equation


2020 ◽  
Vol 54 (11-12) ◽  
pp. 4733-4757 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Dmitry Sidorenko ◽  
Nikolay V. Koldunov ◽  
...  

2009 ◽  
Vol 22 (21) ◽  
pp. 5597-5610 ◽  
Author(s):  
Caroline C. Ummenhofer ◽  
Alexander Sen Gupta ◽  
Andréa S. Taschetto ◽  
Matthew H. England

Abstract This study explores the impact of meridional sea surface temperature (SST) gradients across the eastern Indian Ocean on interannual variations in Australian precipitation. Atmospheric general circulation model (AGCM) experiments are conducted in which the sign and magnitude of eastern Indian Ocean SST gradients are perturbed. This results in significant rainfall changes for western and southeastern Australia. A reduction (increase) in the meridional SST gradient drives a corresponding response in the atmospheric thickness gradients and results in anomalous dry (wet) conditions over Australia. During simulated wet years, this seems to be due to westerly anomalies in the thermal wind over Australia and anomalous onshore moisture advection, with a suggestion that the opposite occurs during dry conditions. Thus, an asymmetry is seen in the magnitude of the forced circulation and precipitation response between the dry and wet simulations. To assess the relative contribution of the SST anomalies making up the meridional gradient, the SST pattern is decomposed into its constituent “poles,” that is, the eastern tropical pole off the northwest shelf of Australia versus the southern pole in the central subtropical Indian Ocean. Overall, the simulated Australian rainfall response is linear with regard to the sign and magnitude of the eastern Indian Ocean SST gradient. The tropical eastern pole has a larger impact on the atmospheric circulation and Australian precipitation changes relative to the southern subtropical pole. However, there is clear evidence of the importance of the southern pole in enhancing the Australian rainfall response, when occurring in conjunction with but of opposite sign to the eastern tropical pole. The observed relationship between the meridional SST gradient in the eastern Indian Ocean and rainfall over western and southeastern Australia is also analyzed for the period 1970–2005. The observed relationship is found to be consistent with the AGCM results.


Sign in / Sign up

Export Citation Format

Share Document