scholarly journals On the impact of atmospheric vs oceanic resolutions on the representation of the sea surface temperature in the South Eastern Tropical Atlantic

2020 ◽  
Vol 54 (11-12) ◽  
pp. 4733-4757 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Dmitry Sidorenko ◽  
Nikolay V. Koldunov ◽  
...  
2020 ◽  
Vol 33 (22) ◽  
pp. 9653-9672
Author(s):  
Shaobo Qiao ◽  
Meng Zou ◽  
Shankai Tang ◽  
Ho Nam Cheung ◽  
Haijing Su ◽  
...  

AbstractThe impact of the wintertime North Atlantic Oscillation (NAO) on the subsequent sea surface temperature (SST) anomalies over the tropical Atlantic has experienced obvious interdecadal changes during 1950–2015. During 1995–2015, the negative (positive) phase of the wintertime NAO favors positive (negative) SST anomalies over the tropical Atlantic in the subsequent spring–summer, whereas the NAO–SST connection is insignificant during 1970–94 and is confined to the northern tropical Atlantic (NTA) during 1950–69. Compared to 1970–94, the much stronger influence on the NTA SST during 1995–2015 and 1950–69 is associated with a southward shift of the southern boundary of the NAO. During 1995–2015, the inverted NAO-related warming of the tropical Atlantic consists of three stages: 1) the pronounced increase in SST over the subtropical North Atlantic (SNA) and the tropical South Atlantic (TSA) during December–January, 2) the pronounced increase in SST over the northwestern tropical Atlantic (NWTA) during February–April, and 3) the persistent warming over the tropical Atlantic during May–August. The increases in SST over the SNA and the TSA are attributed to significant positive latent heat flux anomalies via the wind–evaporation effect, which are connected by the suppressed regional Hadley circulation. Afterward, the associated anomalous downward motion over the NWTA persists into February–April, which induces more incoming shortwave radiation and results in a significant increase in the local SST via the cloud–radiation effect. In contrast, during 1950–69, due to the decreased interannual variability of the vertical motion over the NWTA, the anomalous downward branch aloft and the low-level cross-equatorial northwesterly winds associated with the inverted NAO are not evident, and thus the regions with an increase in SST are confined to the Northern Hemisphere.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Balaji Senapati ◽  
Mihir K. Dash ◽  
Swadhin K. Behera

AbstractExploratory analysis using empirical orthogonal function revealed the presence of a stationary zonal wavenumber-4 (W4) pattern in the sea surface temperature (SST) anomaly in the southern subtropics (20°S–55°S). The signal over the Southern subtropics is seasonally phase-locked to the austral summer and persists up to mid-autumn. Thermodynamic coupling of atmosphere and the upper ocean helps in generating the W4 pattern, which later terminates due to the breaking of that coupled feedback. It is found that the presence of anomalous SST due to W4 mode in the surrounding of Australia affects the rainfall over the continent by modulating the local atmospheric circulation. During positive phase of W4 event, the presence of cold SST anomaly over the south-eastern and -western side of Australia creates an anomalous divergence circulation. This favours the moisture transport towards south-eastern Australia, resulting in more rainfall in February. The scenario reverses in case of a negative W4 event. There is also a difference of one month between the occurrence of positive and negative W4 peaks. This asymmetry seems to be responsible for the weak SST signal to the South of Australia. Correlation analysis suggests that the W4 pattern in SST is independent of other natural variabilities such as Southern Annular Mode, and Indian Ocean Dipole as well as a rather weak relationship with El Niño/Southern Oscillation.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 454
Author(s):  
Andrew R. Jakovlev ◽  
Sergei P. Smyshlyaev ◽  
Vener Y. Galin

The influence of sea-surface temperature (SST) on the lower troposphere and lower stratosphere temperature in the tropical, middle, and polar latitudes is studied for 1980–2019 based on the MERRA2, ERA5, and Met Office reanalysis data, and numerical modeling with a chemistry-climate model (CCM) of the lower and middle atmosphere. The variability of SST is analyzed according to Met Office and ERA5 data, while the variability of atmospheric temperature is investigated according to MERRA2 and ERA5 data. Analysis of sea surface temperature trends based on reanalysis data revealed that a significant positive SST trend of about 0.1 degrees per decade is observed over the globe. In the middle latitudes of the Northern Hemisphere, the trend (about 0.2 degrees per decade) is 2 times higher than the global average, and 5 times higher than in the Southern Hemisphere (about 0.04 degrees per decade). At polar latitudes, opposite SST trends are observed in the Arctic (positive) and Antarctic (negative). The impact of the El Niño Southern Oscillation phenomenon on the temperature of the lower and middle atmosphere in the middle and polar latitudes of the Northern and Southern Hemispheres is discussed. To assess the relative influence of SST, CO2, and other greenhouse gases’ variability on the temperature of the lower troposphere and lower stratosphere, numerical calculations with a CCM were performed for several scenarios of accounting for the SST and carbon dioxide variability. The results of numerical experiments with a CCM demonstrated that the influence of SST prevails in the troposphere, while for the stratosphere, an increase in the CO2 content plays the most important role.


Sign in / Sign up

Export Citation Format

Share Document