Impact of local and regional climate variability on fungi production from Pinus sylvestris forests in Soria, Spain

Author(s):  
Elena García‐Bustamante ◽  
J. Fidel Fidel González‐Rouco ◽  
Elena García‐Lozano ◽  
Fernando Martinez‐Peña ◽  
Jorge Navarro
2008 ◽  
Vol 39 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Maris Klavins ◽  
Valery Rodinov

The study of changes in river discharge is important for regional climate variability characterization and for development of an efficient water resource management system. The hydrological regime of rivers and their long-term changes in Latvia were investigated. Four major types of river hydrological regimes, which depend on climatic and physicogeographic factors, were characterized. These factors are linked to the changes observed in river discharge. Periodic oscillations of discharge, and low- and high-water flow years are common for the major rivers in Latvia. A main frequency of river discharge regime changes of about 20 and 13 years was estimated for the studied rivers. A significant impact of climate variability on the river discharge regime has been found.


2015 ◽  
Vol 99 ◽  
pp. 74-82 ◽  
Author(s):  
Mridula Srinivasan ◽  
Mariela Dassis ◽  
Emily Benn ◽  
Karen A. Stockin ◽  
Emmanuelle Martinez ◽  
...  

2005 ◽  
Vol 89 (1-4) ◽  
pp. V-V
Author(s):  
Lance M. Leslie ◽  
David J. Karoly ◽  
Peter J. Lamb ◽  
Lixin Qi

2011 ◽  
Vol 104 (4) ◽  
pp. 199-212 ◽  
Author(s):  
Elie Verleyen ◽  
Dominic A. Hodgson ◽  
Koen Sabbe ◽  
Holger Cremer ◽  
Steven D. Emslie ◽  
...  

2020 ◽  
Author(s):  
Raphael Hébert ◽  
Ulrike herzschuh ◽  
Thomas Laepple

<p>Multidecadal to millenial timescale climate variability has been investigated over the ocean</p><p>using extensive proxy data and it was found to yield coherent interproxy estimates of global and regional sea-surface temperature (SST) climate variability (Laepple and Huybers, 2014). Global Climate Model (GCM) simulations on the other hand, were found to exhibit an increasingly large deficit of regional SST climate variability for increasingly longer timescales.</p><p>Further investigation is needed to better quantify terrestrial climate variability for long</p><p>timescales and validate climate models.</p><p>Vegetation related proxies such as tree rings and pollen records are the most widespread</p><p>types of archives available to investigate terrestrial climate variability. Tree ring records are</p><p>particularly useful for short time scales estimates due to their annual resolution, while pollen-based reconstructions are necessary to cover the longer timescales. In the present work, we use a large database of 1873 pollen records covering the northern hemisphere in order to quantify Holocene vegetation and climate variability for the first time at centennial to multi-millenial timescales.</p><p>To ensure the robustness of our results, we are particularly interested in the spatio-temporal representativity of the archived signal in pollen records after taking into account the effective spatial scale, the intermittent and irregular sampling, the age-uncertainty and the sediment mixing effect. A careful treatment of the proxy formation allows us to investigate the spatial correlation structure of the pollen-based climate reconstructions as a function of timescales. The pollen data results are then contrasted with the analysis replicated using transient Holocene simulations produced with state-of-the-art climate models as well as stochastic climate model simulations.Our results indicate a substantial gap in terrestrial climate variability between the climate model simulations and the pollen reconstructions at centennial to multi-millenial timescales, mirroring the variability gap found in the marine domain. Finally, we investigate how future climate model projections with greater internal variability would be affected, and how this increases the uncertainty of regional land temperature projections.</p>


2020 ◽  
Author(s):  
Marie Harbott ◽  
Henry C. Wu ◽  
Henning Kuhnert ◽  
Simone A. Kasemann ◽  
Carlos Jimenez ◽  
...  

<p>Ocean warming and ocean acidification (OA) are increasingly influencing marine life. Parts of the increasing amount of CO<sub>2</sub> in the atmosphere will eventually get absorbed by the ocean, which changes the oceans carbonate chemistry and threatens the ecological competitiveness of calcareous marine organisms. Currently,  the global coverage of studies on the development of pH since preindustrial times is sparse. An important region to study environmental and climate variations is the northwestern coastal part of Cuba where the Loop Current (LC) joins the Florida Current and contributes to the Gulf Stream. The tropical Atlantic is a primary region for the formation of warm surface water of the thermohaline ocean circulation and the Caribbean in particular as a habitat for coral reefs in the Atlantic making them susceptible to changes in water temperatures and carbonate chemistry. This provides a unique chance to study multiple aspects of the implications of anthropogenic activities such as changes in SST, ocean pH, and carbonate chemistry using the coral skeletal geochemistry as an archive of climate and environmental changes. Here we present results from a multi-proxy approach for the reconstruction of environmental change and natural climate variability from a North Cuban Siderastrea siderea coral. The sub-seasonally resolved records indicate interannual to decadal changes in SST and seawater carbonate chemistry since 1830 CE. The comparison with pH will provide clues on whether the regional climate variability has been directly affected by atmospheric CO<sub>2</sub> forcing.</p>


1995 ◽  
Vol 100 (C8) ◽  
pp. 15865 ◽  
Author(s):  
Janet Sprintall ◽  
Dean Roemmich ◽  
Basil Stanton ◽  
Richard Bailey

Sign in / Sign up

Export Citation Format

Share Document