scholarly journals Projecting climate change in South America using variable‐resolution Community Earth System Model: An application to Chile

Author(s):  
Nicolas E. Bambach ◽  
Alan M. Rhoades ◽  
Benjamin J. Hatchett ◽  
Andrew D. Jones ◽  
Paul A. Ullrich ◽  
...  
2013 ◽  
Vol 26 (23) ◽  
pp. 9291-9312 ◽  
Author(s):  
J. Keith Moore ◽  
Keith Lindsay ◽  
Scott C. Doney ◽  
Matthew C. Long ◽  
Kazuhiro Misumi

The authors compare Community Earth System Model results to marine observations for the 1990s and examine climate change impacts on biogeochemistry at the end of the twenty-first century under two future scenarios (Representative Concentration Pathways RCP4.5 and RCP8.5). Late-twentieth-century seasonally varying mixed layer depths are generally within 10 m of observations, with a Southern Ocean shallow bias. Surface nutrient and chlorophyll concentrations exhibit positive biases at low latitudes and negative biases at high latitudes. The volume of the oxygen minimum zones is overestimated. The impacts of climate change on biogeochemistry have similar spatial patterns under RCP4.5 and RCP8.5, but perturbation magnitudes are larger under RCP8.5. Increasing stratification leads to weaker nutrient entrainment and decreased primary and export production (>30% over large areas). The global-scale decreases in primary and export production scale linearly with the increases in mean sea surface temperature. There are production increases in the high nitrate, low chlorophyll (HNLC) regions, driven by lateral iron inputs from adjacent areas. The increased HNLC export partially compensates for the reductions in non-HNLC waters (~25% offset). Stabilizing greenhouse gas emissions and climate by the end of this century (as in RCP4.5) will minimize the changes to nutrient cycling and primary production in the oceans. In contrast, continued increasing emission of CO2 (as in RCP8.5) will lead to reduced productivity and significant modifications to ocean circulation and biogeochemistry by the end of this century, with more drastic changes beyond the year 2100 as the climate continues to rapidly warm.


2019 ◽  
Vol 138 (1-2) ◽  
pp. 115-133 ◽  
Author(s):  
Elizabeth A. Burakowski ◽  
Ahmed Tawfik ◽  
Andrew Ouimette ◽  
Lucie Lepine ◽  
Colin Zarzycki ◽  
...  

Ocean Science ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. 729-754
Author(s):  
André Jüling ◽  
Xun Zhang ◽  
Daniele Castellana ◽  
Anna S. von der Heydt ◽  
Henk A. Dijkstra

Abstract. We investigate the freshwater budget of the Atlantic and Arctic oceans in coupled climate change simulations with the Community Earth System Model and compare a strongly eddying setup with 0.1∘ ocean grid spacing to a non-eddying 1∘ configuration typical of Coupled Model Intercomparison Project phase 6 (CMIP6) models. Details of this budget are important to understand the evolution of the Atlantic Meridional Overturning Circulation (AMOC) under climate change. We find that the slowdown of the AMOC in the year 2100 under the increasing CO2 concentrations of the Representative Concentration Pathway 8.5 (RCP8.5) scenario is almost identical between both simulations. Also, the surface freshwater fluxes are similar in their mean and trend under climate change in both simulations. While the basin-scale total freshwater transport is similar between the simulations, significant local differences exist. The high-ocean-resolution simulation exhibits significantly reduced ocean state biases, notably in the salt distribution, due to an improved circulation. Mesoscale eddies contribute considerably to the freshwater and salt transport, in particular at the boundaries of the subtropical and subpolar gyres. Both simulations start in the single equilibrium AMOC regime according to a commonly used AMOC stability indicator and evolve towards the multiple equilibrium regime under climate change, but only the high-resolution simulation enters it due to the reduced biases in the freshwater budget.


2020 ◽  
Author(s):  
André Jüling ◽  
Xun Zhang ◽  
Daniele Castellana ◽  
Anna S. von der Heydt ◽  
Henk A. Dijkstra

Abstract. We investigate the freshwater and salinity budget of the Atlantic and Arctic oceans in a strongly eddying coupled climate change simulation with the Community Earth System Model (CESM) and compare it to a simulation with a coarse ocean resolution CESM configuration, typical of CMIP6 models. Details of these budgets are important to understand the evolution of the Atlantic Meridional Overturning Circulation (AMOC) under climate change. We find that the slowdown of the AMOC in 2100 under the increasing CO2 concentrations of the RCP8.5 scenario is almost identical between both simulations. Also, the surface freshwater fluxes are similar in their mean and trend under climate change in both simulations. While the basin-scale total freshwater transport is similar between the simulations, significant local differences exist. The high ocean resolution simulation exhibits significantly reduced ocean state biases, notably in the salt distribution, due to an improved circulation. Mesoscale eddies contribute considerably to the freshwater and salt transport, in particular at the boundary of the subtropical and subpolar gyres. Both simulations start in the single equilibrium AMOC regime according to a commonly used AMOC stability indicator and evolve towards the multiple equilibrium regime under climate change, but only the high resolution simulation enters it due to the reduced biases in the freshwater budget.


2015 ◽  
Vol 96 (8) ◽  
pp. 1333-1349 ◽  
Author(s):  
J. E. Kay ◽  
C. Deser ◽  
A. Phillips ◽  
A. Mai ◽  
C. Hannay ◽  
...  

Abstract While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920–2100) 30 times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 1000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Early results demonstrate the substantial influence of internal climate variability on twentieth- to twenty-first-century climate trajectories. Global warming hiatus decades occur, similar to those recently observed. Internal climate variability alone can produce projection spread comparable to that in CMIP5. Scientists and stakeholders can use CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change.


Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


Sign in / Sign up

Export Citation Format

Share Document