Inter‐model spreading of changes in East Asian winter monsoon circulation under 1.5°C and 2.0°C global warming targets

Author(s):  
Zhiqing Xu ◽  
Ke Fan
2020 ◽  
Author(s):  
Zixuan Jia ◽  
Massimo Bollasina ◽  
Chaofan Li ◽  
Ruth Doherty ◽  
Oliver Wild

<p>The East Asian winter monsoon (EAWM) is a prominent feature of the northern hemisphere atmospheric circulation during boreal winter, which has a large influence on weather and climate of the Asian-Pacific region. At interannual time scales, the strength of the EAWM is strongly influenced by the El Niño-Southern Oscillation (ENSO), while the ENSO-EAWM relationship displays pronounced interdecadal variations associated with changes in the ENSO teleconnection pathways to East Asia. Using future transient simulations from the Max Planck Institute-Grand Ensemble (MPI-GE), changes in the ENSO-EAWM relationship are examined at various global warming levels during the 21<sup>st</sup>-century. Results indicate that this relationship will enhance from present-day to +1.5°C, and then weaken until +3°C, strongly impacted by changes in anthropogenic forcing with internal variability playing a negligible role. The ENSO-EAWM relationship is strongly related to the background mean state of both the EAWM and ENSO under global warming. Both the climatological EAWM strength and the ENSO-related anomalies across the Asian-Pacific region contribute to changes in the ENSO-EAWM relationship. Furthermore, anthropogenic aerosols are also found to play a major role in influencing the ENSO-EAWM relationship under moderate warming (up to 1.5°C).</p>


2018 ◽  
Vol 31 (21) ◽  
pp. 9001-9014 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Zhou ◽  
Wen Chen ◽  
Renguang Wu ◽  
...  

This study revisits the northern mode of East Asian winter monsoon (EAWM) variation and investigates its response to global warming based on the ERA dataset and outputs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. Results show that the observed variation in East Asian surface air temperature (EAT) is tightly coupled with sea level pressure variation in the expanded Siberian high (SH) region during boreal winter. The first singular value decomposition (SVD) mode of the EAT and SH explains 95% of the squared covariance in observations from 1961 to 2005, which actually represents the northern mode of EAWM variation. Meanwhile, the first SVD mode of the EAT and SH is verified to be equivalent to the first empirical orthogonal function mode (EOF1) of the EAT and SH, respectively. Since the leading mode of the temperature variation is significantly influenced by radiative forcing in a rapidly warming climate, for reliable projection of long-term changes in the northern mode of the EAWM, we further employ the EOF1 mode of the SH to represent the northern mode of EAWM variation. The models can well reproduce this coupling between the EAT and SH in historical simulations. Meanwhile, a robust weakening of the northern mode of the EAWM is found in the RCP4.5 scenario, and with stronger warming in the RCP8.5 scenario, the weakening of the EAWM is more pronounced. It is found that the weakening of the northern mode of the EAWM can contribute 6.7% and 9.4% of the warming trend in northern East Asian temperature under the RCP4.5 and RCP8.5 scenarios, respectively.


1995 ◽  
Vol 44 (2) ◽  
pp. 149-159 ◽  
Author(s):  
Zhongli Ding ◽  
Tungsheng Liu ◽  
Nat W. Rutter ◽  
Zhiwei Yu ◽  
Zhengtang Guo ◽  
...  

AbstractParticle-size measurements of some typical loess-soil samples taken in different localities of the Chinese Loess Plateau demonstrate that the grain size ratio of <2 μm/>10 μm (%) can be used as an indicator of variations in intensity of the East Asian winter monsoon winds. Grain-size curves of the Baoji and Weinan sections show that this proxy indicator is very sensitive to loess-soil alterations. Analytical results also suggest that during soil-forming periods, eolian dust accumulation was still substantial and, hence, loess deposition can be regarded as a nearly continuous process during the Quaternary period. In this study we compared the Baoji grain-size time series with the SPECMAP marine isotope record with the objective of elucidating the dynamic linkage between changes in global ice volume and the winter monsoon circulation. Both records show good agreement at both time and frequency domains. In particular, the winter monsoon variations are also dominated by a 100,000 yr period over the past 800,000 yr. It is thus inferred that direct local insolation forcing could be less important in driving the East Asian winter monsoon variability, and, alternatively, variations in glacial-age boundary conditions may have played a key role in modulating and pacing its strength and timing.


2018 ◽  
Vol 31 (21) ◽  
pp. 8985-9000 ◽  
Author(s):  
Jiapeng Miao ◽  
Tao Wang ◽  
Huijun Wang ◽  
Yali Zhu ◽  
Jianqi Sun

Observations show that the East Asian winter monsoon (EAWM) experienced an interdecadal weakening in the mid-1980s. This is evident for all members of the EAWM system (i.e., East Asian trough, upper-tropospheric jet stream, and lower-tropospheric monsoon circulation). Here, we investigate the relative contributions of natural (volcanic aerosols and solar variability) and anthropogenic [greenhouse gases (GHGs) and anthropogenic aerosols] forcings to this interdecadal weakening using multiple coupled models within phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results indicate that in the midtroposphere, the increased GHG concentrations play an important role in weakening the East Asian trough (EAT) by increasing the sea surface temperatures (SSTs) over the North Pacific. In the upper troposphere, natural external forcings contribute to the observed weakening of the meridional shear of the East Asian jet stream (EAJS) by regulating the meridional temperature gradient (MTG) over the East Asian region. In the lower troposphere, both anthropogenic and natural forcings can weaken the Siberian high during this period. Overall, based on the present analysis of the CMIP5 output, GHGs and natural forcings play key roles in shaping the observed interdecadal weakening of the EAWM during the mid-1980s. Additionally, contributions from internal variability cannot be neglected and require further investigation.


2021 ◽  
pp. 118213
Author(s):  
L.I. Yanjun ◽  
A.N. Xingqin ◽  
Z.H.A.N.G. Peiqun ◽  
Y.A.N.G. Jianling ◽  
W.A.N.G. Chao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document