Changes in the relationship between the East Asian winter monsoon and ENSO under global warming

Author(s):  
Zixuan Jia ◽  
Massimo Bollasina ◽  
Chaofan Li ◽  
Ruth Doherty ◽  
Oliver Wild

<p>The East Asian winter monsoon (EAWM) is a prominent feature of the northern hemisphere atmospheric circulation during boreal winter, which has a large influence on weather and climate of the Asian-Pacific region. At interannual time scales, the strength of the EAWM is strongly influenced by the El Niño-Southern Oscillation (ENSO), while the ENSO-EAWM relationship displays pronounced interdecadal variations associated with changes in the ENSO teleconnection pathways to East Asia. Using future transient simulations from the Max Planck Institute-Grand Ensemble (MPI-GE), changes in the ENSO-EAWM relationship are examined at various global warming levels during the 21<sup>st</sup>-century. Results indicate that this relationship will enhance from present-day to +1.5°C, and then weaken until +3°C, strongly impacted by changes in anthropogenic forcing with internal variability playing a negligible role. The ENSO-EAWM relationship is strongly related to the background mean state of both the EAWM and ENSO under global warming. Both the climatological EAWM strength and the ENSO-related anomalies across the Asian-Pacific region contribute to changes in the ENSO-EAWM relationship. Furthermore, anthropogenic aerosols are also found to play a major role in influencing the ENSO-EAWM relationship under moderate warming (up to 1.5°C).</p>

2021 ◽  
Author(s):  
Wenping Jiang ◽  
Hainan Gong ◽  
Ping Huang ◽  
Lin Wang ◽  
Gang Huang ◽  
...  

Abstract The influence of El Niño–Southern Oscillation (ENSO) on the East Asian winter monsoon (EAWM) is investigated based on the outputs of phase 6 of the Coupled Model Intercomparison Project (CMIP6) models and compared to that in phase 5 (CMIP5). Results show that the CMIP6 models generally reproduce the ENSO-EAWM teleconnection more realistically than the CMIP5 models, although they still somewhat underestimate the ENSO-EAWM teleconnection than observed. Based on the inter-model spread of ENSO-EAWM teleconnection simulated in the CMIP5/CMIP6 models, we reveal that the commonly underestimated ENSO-EAWM teleconnection among the models can be traced back to the excessive cold tongue bias in the equatorial western Pacific. A model with a stronger climatological cold tongue favors generating a more westward extension of the ENSO-related SST anomaly pattern, which in turn forces an anomalous cyclonic circulation over the Northwest Pacific (NWP). It offsets the anticyclonic anomalies in the NWP triggered by the warm ENSO-related SST anomalies in the tropical Indian Ocean and the central-eastern Pacific and weakens the ENSO-EAWM teleconnection. Compared with the CMIP5 models, CMIP6 models better simulate SST mean state and the resultant ENSO-EAWM teleconnection. The present results suggest that substantial efforts should be made to reduce the bias in the mean-state SST for further improving the simulation and projection of the East Asian-western Pacific winter climate.


2018 ◽  
Vol 31 (21) ◽  
pp. 9001-9014 ◽  
Author(s):  
Hainan Gong ◽  
Lin Wang ◽  
Wen Zhou ◽  
Wen Chen ◽  
Renguang Wu ◽  
...  

This study revisits the northern mode of East Asian winter monsoon (EAWM) variation and investigates its response to global warming based on the ERA dataset and outputs from phase 5 of the Coupled Model Intercomparison Project (CMIP5) models. Results show that the observed variation in East Asian surface air temperature (EAT) is tightly coupled with sea level pressure variation in the expanded Siberian high (SH) region during boreal winter. The first singular value decomposition (SVD) mode of the EAT and SH explains 95% of the squared covariance in observations from 1961 to 2005, which actually represents the northern mode of EAWM variation. Meanwhile, the first SVD mode of the EAT and SH is verified to be equivalent to the first empirical orthogonal function mode (EOF1) of the EAT and SH, respectively. Since the leading mode of the temperature variation is significantly influenced by radiative forcing in a rapidly warming climate, for reliable projection of long-term changes in the northern mode of the EAWM, we further employ the EOF1 mode of the SH to represent the northern mode of EAWM variation. The models can well reproduce this coupling between the EAT and SH in historical simulations. Meanwhile, a robust weakening of the northern mode of the EAWM is found in the RCP4.5 scenario, and with stronger warming in the RCP8.5 scenario, the weakening of the EAWM is more pronounced. It is found that the weakening of the northern mode of the EAWM can contribute 6.7% and 9.4% of the warming trend in northern East Asian temperature under the RCP4.5 and RCP8.5 scenarios, respectively.


2006 ◽  
Vol 134 (8) ◽  
pp. 2165-2179 ◽  
Author(s):  
Bingyi Wu ◽  
Renhe Zhang ◽  
Rosanne D’Arrigo

Abstract Two distinct modes of the East Asian winter monsoon (EAWM) have been identified, and they correspond to real and imaginary parts of the leading mode of the EAWM, respectively. Analyses of these modes used the National Centers for Environment Prediction (NCEP) and National Center for Atmospheric Research (NCAR) monthly mean reanalysis datasets for the period 1968–2003, as well as the Southern Oscillation index (SOI), North Atlantic Oscillation index, and eastern equatorial Pacific sea surface temperature (SST) data. Results were obtained by resolving a complex Hermite matrix derived from 850-hPa anomalous wind fields, and determining the resulting modes’ associations with several climate variables. The first distinct mode (M1) is characterized by an anomalous meridional wind pattern over East Asia and the western North Pacific. Mode M1 is closely related to several features of the atmospheric circulation, including the Siberian high, East Asian trough, East Asian upper-tropospheric jet, and local Hadley circulation over East Asia. Thus, M1 reflects the traditional EAWM pattern revealed in previous studies. The second distinct EAWM mode (M2), which was not identified previously, displays dominant zonal wind anomalies over the same area. Mode M2 exhibits a closer relation than M1 to sea level pressure anomalies over the northwestern Pacific southeast of Japan and with the SOI and equatorial eastern Pacific SST. Unlike M1, M2 does not show coherent relationships with the Siberian high, East Asian trough, and East Asian upper-tropospheric jet. Since atmospheric circulation anomalies relevant to M2 exhibit a quasi-barotropic structure, its existence cannot simply be attributed to differential land–sea heating. El Niño events tend to occur in the negative phase of M1 and the positive phase of M2, both corresponding to a weakened EAWM. The Arctic Oscillation does not appear to impact the EAWM on interannual time scales. Although the spatial patterns for the two modes are very different, the two distinct modes are complementary, with the leading EAWM mode being a linear combination of the two. The results herein therefore demonstrate that a single EAWM index may be inappropriate for investigating and predicting the EAWM.


Sign in / Sign up

Export Citation Format

Share Document