scholarly journals Effects of ACL graft placement on in vivo knee function and cartilage thickness distributions

2017 ◽  
Vol 35 (6) ◽  
pp. 1160-1170 ◽  
Author(s):  
Louis E. DeFrate
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Carl Johan Tiderius ◽  
Zana K. Hawezi ◽  
Lars E. Olsson ◽  
Leif E. Dahlberg

Abstract Background The dGEMRIC (delayed Gadolinium-Enhanced MRI of Cartilage) technique has been used in numerous studies for quantitative in vivo evaluation of the relative glycosaminoglycan (GAG) content in cartilage. The purpose of this study was to determine the influence of pre-contrast T1 and cartilage thickness when assessing knee joint cartilage quality with dGEMRIC. Methods Cartilage thickness and T1 relaxation time were measured in the central part of the femoral condyles before and two hours after intravenous Gd-DTPA2− administration in 17 healthy volunteers from a previous study divided into two groups: 9 sedentary volunteers and 8 exercising elite runners. Results were analyzed in superficial and a deep weight-bearing, as well as in non-weight-bearing regions of interest. Results In the medial compartment, the cartilage was thicker in the exercising group, in weight-bearing and non-weight-bearing segments. In most of the segments, the T1 pre-contrast value was longer in the exercising group compared to the sedentary group. Both groups had a longer pre-contrast T1 in the superficial cartilage than in the deep cartilage. In the superficial cartilage, the gadolinium concentration was independent of cartilage thickness. In contrast, there was a linear correlation between the gadolinium concentration and cartilage thickness in the deep cartilage region. Conclusion Cartilage pre-contrast T1 and thickness are sources of error in dGEMRIC that should be considered when analysing bulk values. Our results indicate that differences in cartilage structure due to exercise and weight-bearing may be less pronounced than previously demonstrated.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan Zhou ◽  
Jianghua Ming ◽  
Yaming Li ◽  
Bochun Li ◽  
Ming Deng ◽  
...  

AbstractMicroRNAs (miRNAs) encapsulated within exosomes can serve as essential regulators of intercellular communication and represent promising biomarkers of several aging-associated disorders. However, the relationship between exosomal miRNAs and osteoarthritis (OA)-related chondrocytes and synovial fibroblasts (SFCs) remain to be clarified. Herein, we profiled synovial fluid-derived exosomal miRNAs and explored the effects of exosomal miRNAs derived from SFCs on chondrocyte inflammation, proliferation, and survival, and further assessed their impact on cartilage degeneration in a surgically-induced rat OA model. We identified 19 miRNAs within synovial fluid-derived exosomes that were differentially expressed when comparing OA and control patients. We then employed a microarray-based approach to confirm that exosomal miRNA-126-3p expression was significantly reduced in OA patient-derived synovial fluid exosomes. At a functional level, miRNA-126-3p mimic treatment was sufficient to promote rat chondrocyte migration and proliferation while also suppressing apoptosis and IL-1β, IL-6, and TNF-α expression. SFC-miRNA-126-3p-Exos were able to suppress apoptotic cell death and associated inflammation in chondrocytes. Our in vivo results revealed that rat SFC-derived exosomal miRNA-126-3p was sufficient to suppress the formation of osteophytes, prevent cartilage degeneration, and exert anti-apoptotic and anti-inflammatory effects on articular cartilage. Overall, our findings indicate that SFC exosome‐delivered miRNA-126-3p can constrain chondrocyte inflammation and cartilage degeneration. As such, SFC-miRNA-126-3p-Exos may be of therapeutic value for the treatment of patients suffering from OA.


Author(s):  
Ekin İlke Şen ◽  
Mustafa Aziz Yıldırım ◽  
Tuğba Yeşilyurt ◽  
Fatma Nur Kesiktaş ◽  
Demirhan Dıraçoğlu

2017 ◽  
Vol 45 (12) ◽  
pp. 2817-2823 ◽  
Author(s):  
Betty Liu ◽  
Nimit K. Lad ◽  
Amber T. Collins ◽  
Pramodh K. Ganapathy ◽  
Gangadhar M. Utturkar ◽  
...  

Background: There are currently limited human in vivo data characterizing the role of the meniscus in load distribution within the tibiofemoral joint. Purpose/Hypothesis: The purpose was to compare the strains experienced in regions of articular cartilage covered by the meniscus to regions of cartilage not covered by the meniscus. It was hypothesized that in response to walking, tibial cartilage covered by the meniscus would experience lower strains than uncovered tibial cartilage. Study Design: Descriptive laboratory study. Methods: Magnetic resonance imaging (MRI) of the knees of 8 healthy volunteers was performed before and after walking on a treadmill. Using MRI-generated 3-dimensional models of the tibia, cartilage, and menisci, cartilage thickness was measured in 4 different regions based on meniscal coverage and compartment: covered medial, uncovered medial, covered lateral, and uncovered lateral. Strain was defined as the normalized change in cartilage thickness before and after activity. Results: Within each compartment, covered cartilage before activity was significantly thinner than uncovered cartilage before activity ( P < .001). After 20 minutes of walking, all 4 regions experienced significant cartilage thickness decreases ( P < .01). The covered medial region experienced significantly less strain than the uncovered medial region ( P = .04). No difference in strain was detected between the covered and uncovered regions in the lateral compartment ( P = .40). Conclusion: In response to walking, cartilage that is covered by the meniscus experiences lower strains than uncovered cartilage in the medial compartment. These findings provide important baseline information on the relationship between in vivo tibial compressive strain responses and meniscal coverage, which is critical to understanding normal meniscal function.


2018 ◽  
Vol 47 (1) ◽  
pp. 96-103 ◽  
Author(s):  
E. Grant Sutter ◽  
Betty Liu ◽  
Gangadhar M. Utturkar ◽  
Margaret R. Widmyer ◽  
Charles E. Spritzer ◽  
...  

Background: Changes in knee kinematics after anterior cruciate ligament (ACL) injury may alter loading of the cartilage and thus affect its homeostasis, potentially leading to the development of posttraumatic osteoarthritis. However, there are limited in vivo data to characterize local changes in cartilage thickness and strain in response to dynamic activity among patients with ACL deficiency. Purpose/Hypothesis: The purpose was to compare in vivo tibiofemoral cartilage thickness and cartilage strain resulting from dynamic activity between ACL-deficient and intact contralateral knees. It was hypothesized that ACL-deficient knees would show localized reductions in cartilage thickness and elevated cartilage strains. Study Design: Controlled laboratory study. Methods: Magnetic resonance images were obtained before and after single-legged hopping on injured and uninjured knees among 8 patients with unilateral ACL rupture. Three-dimensional models of the bones and articular surfaces were created from the pre- and postactivity scans. The pre- and postactivity models were registered to each other, and cartilage strain (defined as the normalized difference in cartilage thickness pre- and postactivity) was calculated in regions across the tibial plateau, femoral condyles, and femoral cartilage adjacent to the medial intercondylar notch. These measurements were compared between ACL-deficient and intact knees. Differences in cartilage thickness and strain between knees were tested with multiple analysis of variance models with alpha set at P < .05. Results: Compressive strain in the intercondylar notch was elevated in the ACL-deficient knee relative to the uninjured knee. Furthermore, cartilage in the intercondylar notch and adjacent medial tibia was significantly thinner before activity in the ACL-deficient knee versus the intact knee. In these 2 regions, thinning was significantly influenced by time since injury, with patients with more chronic ACL deficiency (>1 year since injury) experiencing greater thinning. Conclusion: Among patients with ACL deficiency, the medial femoral condyle adjacent to the intercondylar notch in the ACL-deficient knee exhibited elevated cartilage strain and loss of cartilage thickness, particularly with longer time from injury. It is hypothesized that these changes may be related to posttraumatic osteoarthritis development. Clinical Relevance: This study suggests that altered mechanical loading is related to localized cartilage thinning after ACL injury.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hyuck Joon Kwon

The prevalent nature of osteoarthritis that causes the erosion of joint surfaces and loss of mobility and muscle dystrophy that weakens the musculoskeletal system and hampers locomotion underlies the importance of developing functional replacement or regeneration of muscle and cartilage tissues. Polyelectrolyte gels have high potential as cellular scaffolds due to characteristic properties similar to biological matrixes. A number of in vitro and in vivo studies demonstrated that polyelectrolyte gels are useful for replacement and regeneration of muscle and cartilage tissues. In addition, it was also found that polyelectrolyte gels have high biocompatibility, durability, and resistance to biodegradation. Moreover, polyelectrolyte gels can overcome their drawbacks of mechanical behavior by introducing double network into the gel. This paper reviews the current status and recent progress of polyelectrolyte gel-based tissue engineering for repairs of muscle and cartilage tissues.


2012 ◽  
Vol 64 (11) ◽  
pp. 3614-3625 ◽  
Author(s):  
Gladys Valverde-Franco ◽  
Jean-Pierre Pelletier ◽  
Hassan Fahmi ◽  
David Hum ◽  
Koichi Matsuo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document