Knee Cartilage T 2 Relaxation Times 3 Months after ACL Reconstruction Are Associated with Knee Gait Variables Linked to Knee Osteoarthritis

Author(s):  
Jack R. Williams ◽  
Kelsey Neal ◽  
Abdulmajeed Alfayyadh ◽  
Kendra Lennon ◽  
Jacob J. Capin ◽  
...  
2018 ◽  
Vol 27 (8) ◽  
pp. 2643-2652 ◽  
Author(s):  
Matthew P. Ithurburn ◽  
Andrew M. Zbojniewicz ◽  
Staci Thomas ◽  
Kevin D. Evans ◽  
Michael L. Pennell ◽  
...  

2014 ◽  
Vol 22 (10) ◽  
pp. 1367-1376 ◽  
Author(s):  
R.B. Souza ◽  
D. Kumar ◽  
N. Calixto ◽  
J. Singh ◽  
J. Schooler ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
Cristina Bobes Álvarez ◽  
Paloma Issa-Khozouz Santamaría ◽  
Rubén Fernández-Matías ◽  
Daniel Pecos-Martín ◽  
Alexander Achalandabaso-Ochoa ◽  
...  

Patients undergoing anterior cruciate ligament (ACL) reconstruction and patients suffering from knee osteoarthritis (KOA) have been shown to have quadriceps muscle weakness and/or atrophy in common. The physiological mechanisms of blood flow restriction (BFR) training could facilitate muscle hypertrophy. The purpose of this systematic review is to investigate the effects of BFR training on quadriceps cross-sectional area (CSA), pain perception, function and quality of life on these patients compared to a non-BFR training. A literature research was performed using Web of Science, PEDro, Scopus, MEDLINE, Dialnet, CINAHL and The Cochrane Library databases. The main inclusion criteria were that papers were English or Spanish language reports of randomized controlled trials involving patients with ACL reconstruction or suffering from KOA. The initial research identified 159 publications from all databases; 10 articles were finally included. The search was conducted from April to June 2020. Four of these studies found a significant improvement in strength. A significant increase in CSA was found in two studies. Pain significantly improved in four studies and only one study showed a significant improvement in functionality/quality of life. Low-load training with BFR may be an effective option treatment for increasing quadriceps strength and CSA, but more research is needed.


2011 ◽  
Vol 41 (10) ◽  
pp. 708-722 ◽  
Author(s):  
Jason D. Woollard ◽  
Alexandra B. Gil ◽  
Patrick Sparto ◽  
C. Kent Kwoh ◽  
Sara R. Piva ◽  
...  

2015 ◽  
Vol 43 (9) ◽  
pp. 2277-2285 ◽  
Author(s):  
Kendal Marriott ◽  
Trevor B. Birmingham ◽  
Crystal O. Kean ◽  
Catherine Hui ◽  
Thomas R. Jenkyn ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yu Chen ◽  
Jiuheng Lv ◽  
Yejuan Jia ◽  
Ruiqing Wang ◽  
Zidi Zhang ◽  
...  

In this study, a knee osteoarthritis (KOA) rat model induced by monosodium iodoacetate (MIA) was used to study the effect of moxibustion on improving knee cartilage damage and its effect on the intestinal flora. The experimental rats were divided into the normal group (N), model group (M), moxibustion treatment group (MS), and diclofenac sodium treatment group (DS). After 4 weeks, cartilage pathological damage in the knee joint was evaluated using hematoxylin-eosin and safranin O-fast green staining analysis. ELISAs and Western blots were used to detect the expression levels of IL-1β and TNF-α in the serum and cartilage, respectively. The total DNA of the fecal samples was extracted and subjected to high-throughput sequencing of the V3-V4 region of the 16S rRNA gene to analyze the changes in the intestinal flora. In the model group, the cartilage was obviously damaged, the expression levels of IL-1β and TNF-α in the serum and cartilage were increased, and the abundance and diversity of the intestinal flora were decreased. Moxibustion treatment significantly improved the cartilage damage and reduced the concentration of inflammatory factors in the serum and cartilage. The high-throughput sequencing results showed that compared to the model group, the moxibustion treatment regulated some specific species in the intestinal microorganisms rather than the α diversity. In conclusion, our findings suggest that moxibustion treatment may work through two aspects in rats. On one hand, it directly acts on knee cartilage to promote repair, and on the other hand, it regulates the composition of the intestinal flora and reduces the production of inflammatory factors.


2019 ◽  
Vol 7 (7_suppl5) ◽  
pp. 2325967119S0035
Author(s):  
Drew A. Lansdown ◽  
Weiyuan Xiao ◽  
Alan L. Zhang ◽  
Christina R. Allen ◽  
Brian T. Feeley ◽  
...  

Objectives: Following surgical reconstruction of the anterior cruciate ligament (ACL), the tendon graft undergoes a remodeling process of ligamentization. Collagen within the ACL graft becomes organized along the long-axis of the ligament and the proteoglycan content increases. Quantitative imaging sequences, specifically T2 and T1rho, allow for a non-invasive assessment of collagen orientation and proteoglycan content, respectively. The purpose of this study was to investigate the longitudinal progression of T2 and T1rho relaxation times of the graft after ACL reconstruction and the relationship between these quantitative imaging markers and patient-reported outcome measures. We hypothesized that T2 and T1rho would decrease significantly over time, reflecting improved collagen organization and ncreased proteoglycan content, and that T2 and T1rho relaxation times would be inversely correlated with Knee Osteoarthritis Outcome Scores (KOOS). Methods: Thirty-two patients (mean age 29.4±8.2 years, 12 females) were followed prospectively after arthroscopic ACL reconstruction with hamstring autograft. Patients provided informed consent and all procedures were IRB-approved. Exclusion criteria included allograft reconstruction, other ligamentous injury, meniscal tear requiring repair, prior knee surgery, or history of arthritis. Post-operative MR imaging was obtained for 31 patients at 6 months, 30 patients at 12 months, 26 patients at 24 months, and 23 patients at 36 months after surgery. T2 and T1rho relaxation times were simultaneously acquired with a combined 3D sagittal sequence using a 3 T MR system (GE Healthcare) with a 1Tx/8Rx knee coil. The intra-articular ACL graft was identified on a fat-suppressed sagittal high-resolution 3D fast spin echo images and manually segmented. The T2 and T1rho relaxation times for the graft were recorded. Patients completed the KOOS at each imaging time point. Repeated measures analysis of variance (ANOVA) tests with Tukey corrections were used to compare T2 and T1rho relaxation times between time points. The relationship between KOOS and T2 and T1rho values at 2 years post-operative was investigated with Spearman’s rank correlation. Significance was defined as p<0.05. Results: The T2 relaxation times of the ACL graft were significantly higher at 6 months relative to 12 months (p<0.001), 24 months (p<0.001,) and 36 months (p<0.001) after ACL reconstruction, as well as significantly higher at 12 months relative to 36 months (p<0.001) (Figure 1A). The T1rho relaxation times of the ACL graft were significantly higher at 6 months relative to 12 months (p<0.001), 24 months (p<0.001), and 36 months (p<0.001) (Figure 1B). The two-year T2 relaxation times and T1rho relaxation times were significantly correlated with the KOOS Sports, Pain, Symptoms, and Activities of Daily Living sub-scores. Conclusion: We observed significant changes in the tendon graft over time following ACL reconstruction with hamstring autograft, reflecting a higher concentration of proteoglycan and more longitudinally-organized collagen structure over time. Improved collagen organization (lower T2 values) and increased proteoglycan content (lower T1rho values) were correlated with better outcomes based on KOOS scores. Quantitative T2 and T1rho relaxation times of ACL graft may offer a non-invasive method for monitoring graft maturation that correlates with patient-reported knee function after ACL reconstruction. [Figure: see text][Table: see text]


2013 ◽  
Vol 21 ◽  
pp. S213
Author(s):  
K. Subburaj ◽  
R.B. Souza ◽  
B.T. Wyman ◽  
X. Li ◽  
T.M. Link ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document