scholarly journals Game Changer in Soil Science. Functional role of clay minerals in soil

2018 ◽  
Vol 181 (1) ◽  
pp. 99-103 ◽  
Author(s):  
G. Jock Churchman
2009 ◽  
Vol 221 (03) ◽  
Author(s):  
B Steiger ◽  
I Leuschner ◽  
D Denkhaus ◽  
D von Schweinitz ◽  
T Pietsch
Keyword(s):  

2020 ◽  
Author(s):  
Ravikant Piyush ◽  
Aroni Chatterjee ◽  
Shashikant Ray

The world is currently going through a disastrous event and a catastrophic upheaval caused by the coronavirus disease 2019 (COVID-19). The pandemic has resulted in loss of more than 150000 deaths across the globe. Originating from China and spreading across all continents within a short span of time, it has become a matter of international emergency. Different agencies are adopting diverse approaches to stop and spread of this viral disease but still now nothing confirmatory has come up. Due to lack of vaccines and proper therapeutic drugs, the disease is still spreading like wild fire without control. An Old but very promising method- the convalescent plasma therapy could be the key therapy to stop this pandemic. This method has already proven its mettle on several occasions previously and has been found to be effective in curing the pandemics induced by Ebola, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the same group of β-Coronavirus that has resulted in the above diseases. Therefore, the role of plasma therapy is being explored for treatment of this disease. In this review, we have mainly focused on the role of convalescent plasma therapy and why its use should be promoted in fight against COVID-19, as it could turn out to be a game changer.


2020 ◽  
Vol 9 (2) ◽  
pp. 78-88
Author(s):  
Mulugeta Mulat ◽  
Raksha Anand ◽  
Fazlurrahman Khan

The diversity of indole concerning its production and functional role has increased in both prokaryotic and eukaryotic systems. The bacterial species produce indole and use it as a signaling molecule at interspecies, intraspecies, and even at an interkingdom level for controlling the capability of drug resistance, level of virulence, and biofilm formation. Numerous indole derivatives have been found to play an important role in the different systems and are reported to occur in various bacteria, plants, human, and plant pathogens. Indole and its derivatives have been recognized for a defensive role against pests and insects in the plant kingdom. These indole derivatives are produced as a result of the breakdown of glucosinolate products at the time of insect attack or physical damages. Apart from the defensive role of these products, in plants, they also exhibit several other secondary responses that may contribute directly or indirectly to the growth and development. The present review summarized recent signs of progress on the functional properties of indole and its derivatives in different plant systems. The molecular mechanism involved in the defensive role played by indole as well as its’ derivative in the plants has also been explained. Furthermore, the perspectives of indole and its derivatives (natural or synthetic) in understanding the involvement of these compounds in diverse plants have also been discussed.


Sign in / Sign up

Export Citation Format

Share Document