Effects of heat treatments of antinutritional factors and quality of proteins in winged bean

1987 ◽  
Vol 39 (3) ◽  
pp. 267-275 ◽  
Author(s):  
Santram S. Kadam ◽  
Ronald R. Smithard ◽  
Michael D. Eyre ◽  
David G. Armstrong
2020 ◽  
Vol 22 (1) ◽  
pp. 17-26
Author(s):  
A.O. Oyedele ◽  
O.A. Igbeneghu ◽  
T.I. Alade ◽  
O.O. Akinmusire

Natural shea butter (NSB), extracted by traditional methods resulting in its poor quality, is nevertheless widely traded within Africa and beyond due to its several useful applications. This study examined effects of simulated laboratory/domestic heat treatments on quality of the commodity obtained from a cross section of Nigerian markets. Physicochemical and microbiological qualities of NSB samples procured from four selected  markets located across three Nigerian states were evaluated by standard methods before and after graduated thermal stress treatments from 50 through 120 °C over 5, 15, or 30 min durations, respectively, and filtration at 60 °C. Mean physicochemical quality values of NSB samples determined, namely: specific gravity at 29 °C (0.90-0.94); softening, melting temperatures (33-36, 36-39 °C; respectively); acid, iodine, and saponification values (10.5- 29.3, 46.4-59.1, 110-470; respectively), were not adversely or significantly altered by the thermal treatment types and stresses. Whereas all untreated NSB samples demonstrated microbial contamination (total viable counts: 3 6 10 -10 cfu/g) with Pseudomonas, Klebsiella, Staphylococcus, Bacillus, Aspergillus, or Candida species, the graduated heat treatments produced varied sanitizing effects. Higher temperatures (100, 120 °C) gave greater and more rapid cleansing action than the lower temperatures (50, 75 °C), both intensity-ranges being aided by length of holding time. Hot filtration eliminated all the NSB contaminants. In conclusion, while untreated NSB is found grossly contaminated by microbes, unhygienic and unsafe for human use, this study has demonstrated efficient contaminants-cleansing action of heat treatments (³100 °C × ³ 30 min) on NSB, and the total sanitizing effect of hot filtration process. Key words: Natural shea butter, Physicochemical quality, Microbiological quality, Heat treatment, Hot filtration.


2013 ◽  
Vol 704 ◽  
pp. 189-194 ◽  
Author(s):  
Prateek Sibal ◽  
G. Dinesh Babu ◽  
M. Nageswara Rao

Cast aluminium alloy 354 has found widespread application in the automotive industry for its excellent mechanical properties and good castability. The stringent emission norms and demands for improved fuel economy have pushed automobile technology to new frontiers. This has led to efforts to reduce weight while maintaining higher vehicle performance. Cast aluminium alloy 354 is a material that performs with reasonable effectiveness in the high stress automobile environment. The present study looks at the use of strain energy density W and the quality index Qo to determine the effect of process parameters like aging temperature and modification on the quality of the alloy 354 and also to monitor the effect of interrupted heat treatments T6I4 and T6I6 on the quality of the material. The strain energy density W calculated for the interrupted heat treatments on alloy 354 show a broad inverse relation with yield strength Rp. An improvement in the yield strength and the strain energy density of the alloy is observed when the alloy is subjected to modification. At artificial aging temperatures lower than the artificial aging temperature adopted in standard aging treatment an improvement in the Qo and W quality of the alloy 354 have been observed.


Sign in / Sign up

Export Citation Format

Share Document