Cardiac synchronization and arrhythmia during irreversible electroporation

2020 ◽  
Vol 122 (3) ◽  
pp. 407-411
Author(s):  
Conor H. O'Neill ◽  
Robert C. G. Martin
2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 277-277
Author(s):  
Imran A Siddiqui ◽  
Russell C. Kirks ◽  
Erin H Baker ◽  
Eduardo Latouche ◽  
Matt Dewitt ◽  
...  

277 Background: Irreversible electroporation unlike ablation is excellent in inducing cell death via apoptosis. It, however, has disadvantages of electrical conduction via cardiac and nervous tissue. This results in requiring cardiac monitoring and general anesthesia and paralytics while performing electroporation. We hypothesized a novel high-frequency IRE (H-FIRE) system employing ultra-short bipolar pulses would obviate the need for cardiac synchronization and paralytics while maintaining measurable effect on cell death. Methods: Female swine (55-65Kg) were used. Two H-FIRE electrodes were inserted into the liver (1.5-cm spacing). In the absence of paralytics H-FIRE pulses were delivered (2250V, 2-5-2 pulse configuration) at different on times (100 vs. 200μs) or number of pulses (100 vs. 300). Next electrodes were placed across major hepatic vascular structures and H-FIRE performed. At conclusion tissue was resected and analyzed histologically. Results: 24 H-FIREs were performed (mean ablation time 275 secs). No EKG abnormalities or changes in vital signs were measured during H-FIRE procedures. In 1/24 H-FIREs minor twitching of the rectus abdominis was recorded coinciding with pulse delivery. Histologically, tissues had effective electroporation as evidenced by cell death and caspase activity. Blinded scoring was performed for necrosis and apoptosis. Areas of cell death were predictable. No significant vascular damage or coagulated/thermally-desiccated blood was detected within major vessels following H-FIRE. Conclusions: H-FIRE is a novel way of liver electroporation. It produces predictable cell apoptosis without the requirement of paralytics and alteration of electrocardiographic signals as compared to traditional electroporation, while preserving underlying vascular integrity. Its application in cancer cell death needs to be further studied, but it has a potential for clinical use in targeting tumors with minimal morbidity and associated cardiac and neurologic side effects.


2018 ◽  
Author(s):  
G Min ◽  
HS Choi ◽  
W Kim ◽  
SJ Choi ◽  
JM Lee ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 1875638
Author(s):  
Jia Yang ◽  
Aydin Eresen ◽  
Junjie Shangguan ◽  
Quanhong Ma ◽  
Vahid Yaghmai ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2862
Author(s):  
Rasmus V. Flak ◽  
Rune V. Fisker ◽  
Niels H. Bruun ◽  
Mogens T. Stender ◽  
Ole Thorlacius-Ussing ◽  
...  

(1) Background: Irreversible electroporation (IRE) is a nonthermal ablation technique that is being studied in nonmetastatic pancreatic cancer (PC). Most published studies use imaging outcomes as an efficacy endpoint, but imaging interpretation can be difficult and has yet to be correlated with survival. The aim of this study was to examine the correlation of imaging endpoints with survival in a cohort of IRE-treated PC patients. (2) Methods: Several imaging endpoints were examined before and after IRE on 18F-fluorodeoxyglucose positron emission tomography (PET) with computed tomography. Separate analyses were performed at the patient and lesion levels. Mortality rate (MR) ratios for imaging endpoints after IRE were estimated. (3) Results: Forty-one patients were included. Patient-level analysis revealed that progressive disease (PD), as defined by RECIST 1.1, is correlated with a higher MR at all time intervals, but PD, as defined by EORTC PET response criteria, is only correlated with the MR in the longest interval. No correlation was found between PD, as defined by RECIST, and the MR in the lesion-level analysis. (4) Conclusions: Patient-level PD, as defined by RECIST, was correlated with poorer survival after IRE ablation, whereas no correlations were observed in the lesion-level analyses. Several promising lesion-level outcomes were identified.


2021 ◽  
Vol 10 (8) ◽  
pp. 1609
Author(s):  
Zainab L. Rai ◽  
Roger Feakins ◽  
Laura J. Pallett ◽  
Derek Manas ◽  
Brian R. Davidson

Locally advanced pancreatic cancer (LAPC) accounts for 30% of patients with pancreatic cancer. Irreversible electroporation (IRE) is a novel cancer treatment that may improve survival and quality of life in LAPC. This narrative review will provide a perspective on the clinical experience of pancreas IRE therapy, explore the evidence for the mode of action, assess treatment complications, and propose strategies for augmenting IRE response. A systematic search was performed using PubMed regarding the clinical use and safety profile of IRE on pancreatic cancer, post-IRE sequential histological changes, associated immune response, and synergistic therapies. Animal data demonstrate that IRE induces both apoptosis and necrosis followed by fibrosis. Major complications may result from IRE; procedure related mortality is up to 2%, with an average morbidity as high as 36%. Nevertheless, prospective and retrospective studies suggest that IRE treatment may increase median overall survival of LAPC to as much as 30 months and provide preliminary data justifying the well-designed trials currently underway, comparing IRE to the standard of care treatment. The mechanism of action of IRE remains unknown, and there is a lack of data on treatment variables and efficiency in humans. There is emerging data suggesting that IRE can be augmented with synergistic therapies such as immunotherapy.


Author(s):  
Ryszard Wierzbicki ◽  
Maria Pawłowicz ◽  
Józefa Job ◽  
Robert Balawender ◽  
Wojciech Kostarczyk ◽  
...  

Abstract Background The purpose of this study was to investigate the potential of a combination of 3D mixed-reality visualization of medical images using CarnaLife Holo (MedApp, Poland) system as a supporting tool for innovative, minimally invasive surgery/irreversible electroporation—IRA, Nano-Knife), microwave ablation (MWA)/for advanced gastrointestinal tumors. Eight liver and pancreatic tumor treatments were performed. In all of the patients undergoing laparoscopy or open surgery volume and margin were estimated by preoperative visualization. In all patients, neoplastic lesions were considered unresectable by standard methods. Methods Preoperative CT or MRI were transformed into holograms and displayed thanks to the HoloLens 2. During operation, the surgeon’s field of view was augmented with a 3D model of the patient’s relevant structures. Results The intraoperative hologram contributed to better presentation of tumor size and locations, more precise setting of needles used to irreversible electroporation and for determining ablation line in case of liver metastases. Surgeons could easily compare the real patient's anatomy to holographic visualization just before the operations. Conclusions The combination of 3D mixed-reality visualization using CarnaLife Holo with IRA, MWA and next systemic treatment (chemotherapy) might be a new way in personalized treatment of advanced cancers.


Sign in / Sign up

Export Citation Format

Share Document