tissue ablation
Recently Published Documents


TOTAL DOCUMENTS

560
(FIVE YEARS 47)

H-INDEX

44
(FIVE YEARS 3)

2022 ◽  
Vol 151 ◽  
pp. 106893
Author(s):  
Litian Zhang ◽  
Lingfei Ji ◽  
Honglong Zhang ◽  
Xuekun Li ◽  
Junqiang Wang ◽  
...  

2021 ◽  
Vol 68 (4) ◽  
pp. 753-764
Author(s):  
Katja Balantič ◽  
Damijan Miklavčič ◽  
Igor Križaj ◽  
Peter Kramar

Electroporation is used to increase the permeability of the cell membrane through high-voltage electric pulses. Nowadays, it is widely used in different areas, such as medicine, biotechnology, and the food industry. Electroporation induces the formation of hydrophilic pores in the lipid bilayer of cell membranes, to allow the entry or exit of molecules that cannot otherwise cross this hydrophobic barrier. In this article, we critically review the basic principles of electroporation, along with the advantages and drawbacks of this method. We discuss the effects of electroporation on the key components of biological membranes, as well as the main applications of this procedure in medicine, such as electrochemotherapy, gene electrotransfer, and tissue ablation. Finally, we define the most relevant challenges of this romising area of research.


2021 ◽  
Author(s):  
Hamed Mohammadbagherpoor ◽  
Alperen Acemoglu ◽  
Leonardo S. Mattos ◽  
Darwin Caldwell ◽  
James J. Johnson ◽  
...  

Abstract Biomedical robotic systems continue to hold unlimited potential for surgical procedures. Robotized laser endoscopic tools provide surgeons with increased accuracy in the laser ablation of tissue and tumors. The research here catalogs the design and implementation of a new laser endoscopic tool for tissue ablation. A novel feature of this new device is the inclusion of a feedback loop that measures the position of the laser beam via a photo-detector sensor. The scale of this new device was governed by the dimensions of the photo-detector sensor. The tip of the laser's fiber optic cable is controlled by the torque interaction between permanent magnet rings surrounding the fiber optic and the custom designed solenoid coils. Prior to building the physical test-bed the system was modeled and simulated using COMSOL software. In pre-clinical trials, the physical experimental results showed that the designed prototype laser scanner system accurately track different ablation patterns and gives a consistent output position for the laser beam however, the heat diffusion into the tissue around the desired line of the geometric shape would give wider ablation margins than was desirable.


2021 ◽  
Author(s):  
Liliya I. Lisitsyna ◽  
Svetlana V. Belavskaya ◽  
Anton N. Kuzmin ◽  
Alexander A. Blokhin ◽  
Leonid G. Navrotsky ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seung Jeong ◽  
Hongbae Kim ◽  
Junhyung Park ◽  
Ki Woo Kim ◽  
Sung Bo Sim ◽  
...  

AbstractIrreversible electroporation (IRE) is a tissue ablation method, uses short high electric pulses and results in cell death in target tissue by irreversibly permeabilizing the cell membrane. Potato is commonly used as a tissue model for electroporation experiments. The blackened area that forms 12 h after electric pulsing is regarded as an IRE-ablated area caused by melanin accumulation. Here, the 2,3,5-triphenyltetrazolium chloride (TTC) was used as a dye to assess the IRE-ablated area 3 h after potato model ablation. Comparison between the blackened area and TTC-unstained white area in various voltage conditions showed that TTC staining well delineated the IRE-ablated area. Moreover, whether the ablated area was consistent over time and at different staining times was investigated. In addition, the presumed reversible electroporation (RE) area was formed surrounding the IRE-ablated area. Overall, TTC staining can provide a more rapid and accurate electroporated area evaluation.


2021 ◽  
Vol 19 (4) ◽  
pp. 1045-1048
Author(s):  
S. Yavari ◽  
P. Geramifar ◽  
M. Fallahpoor ◽  
V. Changizi ◽  
M. Gholami ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yuchi Zhang ◽  
Xuan Han ◽  
Zhuoqun Li ◽  
Yu Zhang ◽  
Lihong Liang ◽  
...  

Abstract Background Irreversible electroporation (IRE) is an emerging tissue ablation technique with widespread potential, especially for cancer treatment. Although the safety and efficacy of IRE for gastric tissue ablation have been demonstrated, there is a gap of knowledge regarding the effect of electroporation pulse (EP) on the physiology and histopathology of the stomach. This study applied EP to the stomach of healthy rats and investigated the digestive function, serum marker levels, and gastric tissue structure of EP-treated rats. Methods Ninety male rats were divided into nine groups and examined up to 28 days post-treatment. A single burst of electroporation pulse (500 V, 99 pluses, 1 Hz, 100 µs) was delivered to the stomachs of rats using a tweezer-style round electrode. Gastric emptying, small intestinal transit, and gastric secretion were measured to evaluate the digestive function. Serum marker levels were determined using ELISA. Haematoxylin–eosin, Masson trichrome, and immunofluorescence were performed for histopathological analysis. Results No  significant effect on gastric emptying or secretion was found post-EP, whereas the small intestinal transit decreased at 4 h and rapidly recovered to normal on 1-day post-EP. Further, serum TNF-α and IL-1β levels temporarily changed during the acute phase but returned to baseline within 28 days. Moreover, histopathological analysis revealed that cell death occurred immediately post-EP in the ablation area, whereas the gastric wall scaffold in the ablation region remained intact post-EP. Conclusions This study demonstrates the safety and efficacy of EP on the physiology and histopathology of the stomach and lays a foundation for more comprehensive applications of this technique.


2021 ◽  
Vol 6 (57) ◽  
pp. eabg5575
Author(s):  
Ge Fang ◽  
Marco C. K. Chow ◽  
Justin D. L. Ho ◽  
Zhuoliang He ◽  
Kui Wang ◽  
...  

Magnetic resonance (MR) imaging (MRI) provides compelling features for the guidance of interventional procedures, including high-contrast soft tissue imaging, detailed visualization of physiological changes, and thermometry. Laser-based tumor ablation stands to benefit greatly from MRI guidance because 3D resection margins alongside thermal distributions can be evaluated in real time to protect critical structures while ensuring adequate resection margins. However, few studies have investigated the use of projection-based lasers like those for transoral laser microsurgery, potentially because dexterous laser steering is required at the ablation site, raising substantial challenges in the confined MRI bore and its strong magnetic field. Here, we propose an MR-safe soft robotic system for MRI-guided transoral laser microsurgery. Owing to its miniature size (Ø12 × 100 mm), inherent compliance, and five degrees of freedom, the soft robot ensures zero electromagnetic interference with MRI and enables safe and dexterous operation within the confined oral and pharyngeal cavities. The laser manipulator is rapidly fabricated with hybrid soft and hard structures and is powered by microvolume (<0.004 milliter) fluid flow to enable laser steering with enhanced stiffness and lowered hysteresis. A learning-based controller accommodates the inherent nonlinear robot actuation, which was validated with laser path–following tests. Submillimeter laser steering accuracy was demonstrated with a mean error < 0.20 mm. MRI compatibility testing demonstrated zero observable image artifacts during robot operation. Ex vivo tissue ablation and a cadaveric head-and-neck trial were carried out under MRI, where we employed MR thermometry to monitor the tissue ablation margin and thermal diffusion intraoperatively.


Sign in / Sign up

Export Citation Format

Share Document