Effectiveness of different approaches for in situ measurements of organic carbon using visible and near infrared spectrometry in the Poyang Lake basin area

Author(s):  
Meihua Yang ◽  
Songchao Chen ◽  
Hongyi Li ◽  
Xiaomin Zhao ◽  
Zhou Shi
2018 ◽  
Vol 10 (5) ◽  
pp. 713 ◽  
Author(s):  
Hao Zhou ◽  
Zhicai Luo ◽  
Natthachet Tangdamrongsub ◽  
Zebing Zhou ◽  
Lijie He ◽  
...  

2014 ◽  
Vol 17 (3) ◽  
pp. 154 ◽  
Author(s):  
Arıtürk Cem ◽  
Ustalar Serpil ◽  
Toraman Fevzi ◽  
Ökten Murat ◽  
Güllü Ümit ◽  
...  

<p><strong>Introduction:</strong> Clear guidelines for red cell transfusion during cardiac surgery have not yet been established. The current focus on blood conservation during cardiac surgery has increased the urgency to determine the minimum safe hematocrit for these patients. The aim of this study was to determine whether monitoring of cerebral regional oxygen saturation (rSO<sub>2</sub>) via near-infrared spectrometry (NIRS) is effective for assessing the cerebral effects of severe dilutional anemia during elective coronary arterial bypass graft surgery (CABG).</p><p><strong>Methods:</strong> The prospective observational study involved patients who underwent cerebral rSO<sub>2</sub> monitoring by NIRS during elective isolated first-time CABG: an anemic group (<em>N</em>=15) (minimum Hemoglobin (Hb) N=15) (Hb &gt;8 g/dL during CPB). Mean arterial pressure (MAP), pump blood flow, blood lactate level, pCO<sub>2</sub>, pO<sub>2</sub> at five time points and cross-clamp time, extracorporeal circulation time were recorded for each patient. Group results statistically were compared.</p><p><strong>Results:</strong> The anemic group had significantly lower mean preoperative Hb than the control group (10.3 mg/dL versus 14.2 mg/dL; <em>P</em> = .001). The lowest Hb levels were observed in the hypothermic period of CPB in the anemic group. None of the controls exhibited a &gt;20% decrease in cerebral rSO<sub>2</sub>. Eleven (73.3%) of the anemic patients required an increase in pump blood flow to raise their cerebral rSO<sub>2</sub>.</p><p><strong>Conclusions:</strong> In this study, the changes in cerebral rSO<sub>2</sub> in the patients with low Hb were within acceptable limits, and this was in concordance with the blood lactate levels and blood-gas analysis. It can be suggested that NIRS monitoring of cerebral rSO<sub>2</sub> can assist in decision making related to blood transfusion and dilutional anemia during CPB.</p>


2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


Sign in / Sign up

Export Citation Format

Share Document