scholarly journals Subsurface maxima in buoyant fish eggs indicate vertical velocity shear and spatially limited spawning grounds

2018 ◽  
Vol 64 (3) ◽  
pp. 1239-1251 ◽  
Author(s):  
Kjersti Opstad Strand ◽  
Frode Vikebø ◽  
Svein Sundby ◽  
Ann Kristin Sperrevik ◽  
øyvind Breivik
2011 ◽  
Vol 41 (4) ◽  
pp. 657-665 ◽  
Author(s):  
Fan Jia ◽  
Lixin Wu ◽  
Bo Qiu

Abstract Mesoscale eddy activity in the southeast Indian Ocean (15°–30°S, 60°–110°E) is investigated based on available satellite altimetry observations. The observed sea level anomaly data show that this region is the only eastern basin among the global oceans where strong eddy activity exists. Furthermore, the eddy kinetic energy (EKE) level in this region displays a distinct seasonal cycle with the maximum in austral summer and minimum in austral winter. It is found that this seasonal modulation of EKE is mediated by baroclinic instability associated with the surface-intensified South Indian Countercurrent (SICC) and the underlying South Equatorial Current (SEC) system. In austral spring and summer the enhanced flux forcing of combined meridional Ekman and geostrophic convergence strengthens the upper-ocean meridional temperature gradient, intensifying the SICC front and its vertical velocity shear. Modulation of the vertical velocity shear results in the seasonal changes in the strength of baroclinic instability, leading to the seasonal EKE variations in the southeast Indian Ocean.


2009 ◽  
Vol 52 (4) ◽  
pp. 933-944 ◽  
Author(s):  
Samara Hermes-Silva ◽  
David Reynalte-Tataje ◽  
Evoy Zaniboni-Filho

The distribution and abundance of fish eggs and larvae was analyzed in three sections of the Upper Uruguay river, in a stretch of 290 km. Samples were collected monthly from October, 2001 to March, 2002 during 48-h cycles at 6-h intervals between each sampling. Surface and bottom samples were collected with a 0.5-mm mesh cylindroconical net. Fishes from the Upper Uruguay river were reproductively active mainly from October to January, and this activity was more intense at the Ligeiro and Chapecó tributaries and Chapecó main river. It was observed that the tributaries are important spawning grounds and larval nursery sites, indicating the importance of preserving such environments.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5807 ◽  
Author(s):  
Mingdian Liu ◽  
Dengqiang Wang ◽  
Lei Gao ◽  
Huiwu Tian ◽  
Shaoping Liu ◽  
...  

The dam constructions greatly changed the hydrologic conditions in the Yangtze River, and then significantly affected the spawning activities of indigenous river fish. Monitoring the species composition of drifting eggs during spawning season is important for protection issues. In this study, we have sampled drifting fish eggs in nine locations from 2014 to 2016. Eggs were identified using the mitochondrial cyt b gene sequence. A total of 7,933 fish eggs were sequenced successfully and blasted into the NCBI database. Thirty-nine fish species were identified, and were assigned to four families and two orders. Approximately 64% of the species identified, and 67% of the eggs, were classified in the Family Cyprinidae. Abundance and Shannon–Wiener diversity index of species were higher in the main river than in tributaries of the river. However, tributaries may be important spawning grounds for some fish species. The Jaccard’s similarity index and river-way distances among sampled stations were negatively correlated suggesting the environment shapes species composition in the sampled spawning grounds. These results showed that mitochondrial DNA sequence is a powerful and effective tool for fish egg identification in Yangtze River and these data are useful for conservation efforts.


Author(s):  
N. P. Kuzmina ◽  
S. L. Skorokhodov ◽  
N. V. Zhurbas ◽  
D. A. Lyzhkov

A spectral problem of Orr-Sommerfeld type for describing stable and unstable disturbances of oceanic geostrophic flows with linear vertical velocity shear is considered. Calculations of eigenvalues, increments of growth rate of unstable modes, and eigenfunctions of the fastest growing disturbances are presented. It is found that the instability of the flow is observed over a wide range of horizontal scales: in addition to long-wave perturbations with a phase velocity exceeding the maximum flow velocity and perturbations with scales of the Rossby radius, short-wave modes with scales much smaller than the Rossby radius (sub-mesoscale structures) exist. The results of the model are used to describe intrusions in the Arctic basin, which are observed under conditions of absolutely stable stratification.


2014 ◽  
Vol 496 ◽  
pp. 71-84 ◽  
Author(s):  
SM Wilson ◽  
SG Hinch ◽  
SM Drenner ◽  
EG Martins ◽  
NB Furey ◽  
...  

1999 ◽  
Vol 45 (151) ◽  
pp. 533-538 ◽  
Author(s):  
Niels Reeh ◽  
Søren Nørvang Madsen ◽  
Johan Jakob Mohr

AbstractUntil now, an assumption of surface-parallel glacier flow has been used to express the vertical velocity component in terms of the horizontal velocity vector, permitting all three velocity components to be determined from synthetic aperture radar interferometry. We discuss this assumption, which neglects the influence of the local mass balance and a possible contribution to the vertical velocity arising if the glacier is not in steady state. We find that the mass-balance contribution to the vertical surface velocity is not always negligible as compared to the surface-slope contribution. Moreover, the vertical velocity contribution arising if the ice sheet is not in steady state can be significant. We apply the principle of mass conservation to derive an equation relating the vertical surface velocity to the horizontal velocity vector. This equation, valid for both steady-state and non-steady-state conditions, depends on the ice-thickness distribution. Replacing the surface-parallel-flow assumption with a correct relationship between the surface velocity components requires knowledge of additional quantities such as surface mass balance or ice thickness.


Sign in / Sign up

Export Citation Format

Share Document