scholarly journals On the instability of a geostrophic current with a constant vertical velocity shear taking into account diffusion of mass and impulse

Author(s):  
Natalia Petrovna Kuzmina ◽  
◽  
Sergey Leonidovich Skorokhodov ◽  
Nataliya Victorovna Zhurbas ◽  
Dmitriy Aleksandrovich Lyzhkov ◽  
...  
2011 ◽  
Vol 41 (4) ◽  
pp. 657-665 ◽  
Author(s):  
Fan Jia ◽  
Lixin Wu ◽  
Bo Qiu

Abstract Mesoscale eddy activity in the southeast Indian Ocean (15°–30°S, 60°–110°E) is investigated based on available satellite altimetry observations. The observed sea level anomaly data show that this region is the only eastern basin among the global oceans where strong eddy activity exists. Furthermore, the eddy kinetic energy (EKE) level in this region displays a distinct seasonal cycle with the maximum in austral summer and minimum in austral winter. It is found that this seasonal modulation of EKE is mediated by baroclinic instability associated with the surface-intensified South Indian Countercurrent (SICC) and the underlying South Equatorial Current (SEC) system. In austral spring and summer the enhanced flux forcing of combined meridional Ekman and geostrophic convergence strengthens the upper-ocean meridional temperature gradient, intensifying the SICC front and its vertical velocity shear. Modulation of the vertical velocity shear results in the seasonal changes in the strength of baroclinic instability, leading to the seasonal EKE variations in the southeast Indian Ocean.


2018 ◽  
Vol 64 (3) ◽  
pp. 1239-1251 ◽  
Author(s):  
Kjersti Opstad Strand ◽  
Frode Vikebø ◽  
Svein Sundby ◽  
Ann Kristin Sperrevik ◽  
øyvind Breivik

Author(s):  
N. P. Kuzmina ◽  
S. L. Skorokhodov ◽  
N. V. Zhurbas ◽  
D. A. Lyzhkov

A spectral problem of Orr-Sommerfeld type for describing stable and unstable disturbances of oceanic geostrophic flows with linear vertical velocity shear is considered. Calculations of eigenvalues, increments of growth rate of unstable modes, and eigenfunctions of the fastest growing disturbances are presented. It is found that the instability of the flow is observed over a wide range of horizontal scales: in addition to long-wave perturbations with a phase velocity exceeding the maximum flow velocity and perturbations with scales of the Rossby radius, short-wave modes with scales much smaller than the Rossby radius (sub-mesoscale structures) exist. The results of the model are used to describe intrusions in the Arctic basin, which are observed under conditions of absolutely stable stratification.


1999 ◽  
Vol 45 (151) ◽  
pp. 533-538 ◽  
Author(s):  
Niels Reeh ◽  
Søren Nørvang Madsen ◽  
Johan Jakob Mohr

AbstractUntil now, an assumption of surface-parallel glacier flow has been used to express the vertical velocity component in terms of the horizontal velocity vector, permitting all three velocity components to be determined from synthetic aperture radar interferometry. We discuss this assumption, which neglects the influence of the local mass balance and a possible contribution to the vertical velocity arising if the glacier is not in steady state. We find that the mass-balance contribution to the vertical surface velocity is not always negligible as compared to the surface-slope contribution. Moreover, the vertical velocity contribution arising if the ice sheet is not in steady state can be significant. We apply the principle of mass conservation to derive an equation relating the vertical surface velocity to the horizontal velocity vector. This equation, valid for both steady-state and non-steady-state conditions, depends on the ice-thickness distribution. Replacing the surface-parallel-flow assumption with a correct relationship between the surface velocity components requires knowledge of additional quantities such as surface mass balance or ice thickness.


The propagation properties of linear wave motions in magnetic and/or velocity shears which vary in one coordinate z (say) are usually governed by a second order linear ordinary differential equation in the independent variable z. It is proved that associated with any such differential equation there always exists a quantity A which is independent of z. By employing A a measure of the intensity of the wave, this result is used to investigate the general propagation properties of hydromagnetic-gravity waves (e.g. critical level absorption, valve effects and wave amplification) in magnetic and/or velocity shears, using a full wave treatment. When variations in the basic state are included, the governing differential equation usually has more singularities than it has in the W.K.B.J. approximation, which neglects all variations in the background state. The study of a wide variety of models shows that critical level behaviour occurs only at the singularities predicted by the W.K.B.J. approximation. Although the solutions of the differential equation are necessarily singular at the irregularities whose presence is solely due to the inclusion of variations in the basic state, the intensity of the wave (as measured by A) is continuous there. Also the valve effect is found to persist whatever the relation between the wavelength of the wave and the scale of variations of the background state. In addition, it is shown that a hydromagnetic-gravity wave incident upon a finite magnetic and/or velocity shear can be amplified (or over-reflected) in the absence of any critical levels within the shear layer. In a Boussinesq fluid rotating uniformly about the vertical, wave amplification can occur if the horizontal vertically sheared flow and magnetic field are perpendicular. In a compressible isothermal fluid, on the other hand, wave amplification not only occurs in both magnetic-velocity and velocity shears but also in a magnetic shear acting alone.


Sign in / Sign up

Export Citation Format

Share Document