Edge delamination width prediction of 3D body‐in‐white part by finite element‐based corrosion simulation and neural networks

Author(s):  
Ludwig Waibel ◽  
Konstantin Kapfer ◽  
Christoph Hepfner ◽  
Andreas Mittelbach ◽  
Stefan Funken ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


2010 ◽  
Vol 113-116 ◽  
pp. 1707-1711
Author(s):  
Jian Hua Hu ◽  
Yuan Hua Shuang

A method combines a back propagation neural networks (BPNN) with the data obtained using finite element method (FEM) is introduced in this paper as an approach to solve reverse problems. This paper presents the feasibility of this approach. FEM results are used to train the BPNN. Inputs of the network are associated with dimension deviation values of the steel pipe, and outputs correspond to its pass parameters. Training of the network ensures low error and good convergence of the learning process. At last, a group of optimal pass parameters are obtained, and reliability and accuracy of the parameters are verified by FEM simulation.


2017 ◽  
Vol 62 (1) ◽  
pp. 435-442 ◽  
Author(s):  
P. Golewski ◽  
J. Gajewski ◽  
T. Sadowski

Abstract Artificial neural networks [ANNs] are an effective method for predicting and classifying variables. This article presents the application of an integrated system based on artificial neural networks and calculations by the finite element method [FEM] for the optimization of geometry of a thin-walled element of an air structure. To ensure optimal structure, the structure’s geometry was modified by creating side holes and ribs, also with holes. The main criterion of optimization was to reduce the structure’s weight at the lowest possible deformation of the tested object. The numerical tests concerned a fragment of an elevator used in the “Bryza” aircraft. The tests were conducted for networks with radial basis functions [RBF] and multilayer perceptrons [MLP]. The calculations described in the paper are an attempt at testing the FEM - ANN system with respect to design optimization.


Sign in / Sign up

Export Citation Format

Share Document