Enhanced Piezoelectric Performance of Electrospun Polyvinylidene Fluoride Doped with Inorganic Salts

2017 ◽  
Vol 302 (11) ◽  
pp. 1700214 ◽  
Author(s):  
Bin Yu ◽  
Mengye Mao ◽  
Hao Yu ◽  
Tao Huang ◽  
Weiwei Zuo ◽  
...  
2019 ◽  
Vol 19 (02) ◽  
pp. 1950008 ◽  
Author(s):  
R. Tamil Selvan ◽  
W. A. D. M. Jayathilaka ◽  
A. Hilaal ◽  
S. Ramakrishna

Fabrication of Nanogenerators (NGs) using Electrospun polyvinylidene fluoride (PVDF) nanofibers for sensing and energy harvesting applications is a trending research due to its flexibility, biocompatibility, low-cost, etc. Different electrode materials, polymer composites had been proposed to increase the energy output. However, the contact area between the electrode material and nanofiber mat which helps to conduct more piezoelectric charges to the electrode surface are still unexplored especially at nanoscale level. In this paper, authors have proposed the use of low-cost carbon conductive paint to increase the contact area between the electrode and nanofiber mat. The electrode material is coated with conductive paint and the NG was fabricated with that electrode to compare the performances with conventional NG. Piezoelectric performance of the proposed NG has increased substantially as it generates an open circuit voltage [Formula: see text]) of 4.5[Formula: see text]V and short circuit current [Formula: see text]) of 25[Formula: see text]nA, whereas the conventional NG can only produce 1.6 [Formula: see text]) and 1.5[Formula: see text]nA [Formula: see text]). A drop test experiment was conducted, and the device consistency was verified experimentally.


RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20662-20669
Author(s):  
Cheng Yang ◽  
Ning Chen ◽  
Xingang Liu ◽  
Qi Wang ◽  
Chuhong Zhang

In this study, a facile strategy coupling selective laser sintering (SLS) and supercritical carbon dioxide (ScCO2) foaming technology is proposed to prepare a three-dimensional porous polyvinylidene fluoride (PVDF) with an improved piezoelectric output.


2013 ◽  
Vol 28 (6) ◽  
pp. 671-676 ◽  
Author(s):  
Yu-Qing ZHANG ◽  
Li-Li ZHAO ◽  
Shi-Long XU ◽  
Chao ZHANG ◽  
Xiao-Ying CHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document