Enhanced piezoelectric performance of multi-layered flexible polyvinylidene fluoride–BaTiO3–rGO films for monitoring human body motions

Author(s):  
Yinhui Li ◽  
Jianqiang Tan ◽  
Kun Liang ◽  
Yong Li ◽  
Jiaojiao Sun ◽  
...  
2019 ◽  
Vol 19 (02) ◽  
pp. 1950008 ◽  
Author(s):  
R. Tamil Selvan ◽  
W. A. D. M. Jayathilaka ◽  
A. Hilaal ◽  
S. Ramakrishna

Fabrication of Nanogenerators (NGs) using Electrospun polyvinylidene fluoride (PVDF) nanofibers for sensing and energy harvesting applications is a trending research due to its flexibility, biocompatibility, low-cost, etc. Different electrode materials, polymer composites had been proposed to increase the energy output. However, the contact area between the electrode material and nanofiber mat which helps to conduct more piezoelectric charges to the electrode surface are still unexplored especially at nanoscale level. In this paper, authors have proposed the use of low-cost carbon conductive paint to increase the contact area between the electrode and nanofiber mat. The electrode material is coated with conductive paint and the NG was fabricated with that electrode to compare the performances with conventional NG. Piezoelectric performance of the proposed NG has increased substantially as it generates an open circuit voltage [Formula: see text]) of 4.5[Formula: see text]V and short circuit current [Formula: see text]) of 25[Formula: see text]nA, whereas the conventional NG can only produce 1.6 [Formula: see text]) and 1.5[Formula: see text]nA [Formula: see text]). A drop test experiment was conducted, and the device consistency was verified experimentally.


2017 ◽  
Vol 302 (11) ◽  
pp. 1700214 ◽  
Author(s):  
Bin Yu ◽  
Mengye Mao ◽  
Hao Yu ◽  
Tao Huang ◽  
Weiwei Zuo ◽  
...  

2020 ◽  
Vol 977 ◽  
pp. 277-282
Author(s):  
Ming Ran Liu

To date, flexible, sensitive and biocompatible pressure sensors for fluctuation signals in human body have been mainly demonstrated for detecting body and muscle motion, pulse rate, heart rate and arterial blood pressure. However, because of the lack of sufficient sensitivity and flexibility, pulse signals with relatively low intensity cannot be identified and captured, such as signals derived from microcirculation in human body. As confirmed and validated by researchers, once PVDF and its copolymer based nanocomposite sensing material are applied in piezoelectric sensors, its sensitivity and piezoelectricity are highly relevant. Therefore, as one of the most effective methods to improve the permittivity and piezoelectricity of PVDF and its copolymer based nanocomposite, the effect of increasing the content of β-phase crystal was investigated in this work. In this project, the sensor possessing a novel sensing layer with the nanofiller was investigated and fabricated. The proposed sensor was designed in a simple but efficient sandwich structure. The sensing layer of the proposed sensor was made of polyvinylidene fluoride (PVDF) and polyvinylidenefluoride-trifluoroethylene (PVDF-TrFE) based nanocomposite with Zinc Oxide (ZnO) nanostructure acting as a filler portion which was fabricated by the method of Chemical Bath Deposition (CBD). The fabricated nanocomposite sensing layers were characterized. The microstructures and morphologies of pristine PVDF (P), PVDF-TrFE (PT), PVDF/ZnO (P/Z) and PVDF-TrFE/ZnO (PT/Z) with different concentration were characterized by Scanning Electron Microscope (SEM). The degree of crystallinity for P, PT, P/Z and PT/Z was obtained by X-ray Diffraction meter (XRD). In conclusion, PT exhibited better performance in both morphology and crystallinity as a sensing membrane material. More β‐phase in PT was obtained than that in P. ZnO, as a semiconductor filler, would have substantial influence on enhancing the dielectric constant by acting as a nucleating agent and forming a nanostructure with large aspect ratio.


RSC Advances ◽  
2021 ◽  
Vol 11 (34) ◽  
pp. 20662-20669
Author(s):  
Cheng Yang ◽  
Ning Chen ◽  
Xingang Liu ◽  
Qi Wang ◽  
Chuhong Zhang

In this study, a facile strategy coupling selective laser sintering (SLS) and supercritical carbon dioxide (ScCO2) foaming technology is proposed to prepare a three-dimensional porous polyvinylidene fluoride (PVDF) with an improved piezoelectric output.


2020 ◽  
Vol 18 ◽  
pp. 100504
Author(s):  
Y.-N. Song ◽  
M.-Q. Lei ◽  
J. Lei ◽  
Z.-M. Li

Author(s):  
Shulin Wen ◽  
Jingwei Feng ◽  
A. Krajewski ◽  
A. Ravaglioli

Hydroxyapatite bioceramics has attracted many material scientists as it is the main constituent of the bone and the teeth in human body. The synthesis of the bioceramics has been performed for years. Nowadays, the synthetic work is not only focused on the hydroapatite but also on the fluorapatite and chlorapatite bioceramics since later materials have also biological compatibility with human tissues; and they may also be very promising for clinic purpose. However, in comparison of the synthetic bioceramics with natural one on microstructure, a great differences were observed according to our previous results. We have investigated these differences further in this work since they are very important to appraise the synthetic bioceramics for their clinic application.The synthetic hydroxyapatite and chlorapatite were prepared according to A. Krajewski and A. Ravaglioli and their recent work. The briquettes from different hydroxyapatite or chlorapatite powders were fired in a laboratory furnace at the temperature of 900-1300°C. The samples of human enamel selected for the comparison with synthetic bioceramics were from Chinese adult teeth.


Author(s):  
Tong Wensheng ◽  
Lu Lianhuang ◽  
Zhang Zhijun

This is a combined study of two diffirent branches, photogrammetry and morphology of blood cells. The three dimensional quantitative analysis of erythrocytes using SEMP technique, electron computation technique and photogrammetry theory has made it possible to push the study of mophology of blood cells from LM, TEM, SEM to a higher stage, that of SEM P. A new path has been broken for deeply study of morphology of blood cells.In medical view, the abnormality of the quality and quantity of erythrocytes is one of the important changes of blood disease. It shows the abnormal blood—making function of the human body. Therefore, the study of the change of shape on erythrocytes is the indispensable and important basis of reference in the clinical diagnosis and research of blood disease.The erythrocytes of one normal person, three PNH Patients and one AA patient were used in this experiment. This research determines the following items: Height;Length of two axes (long and short), ratio; Crevice in depth and width of cell membrane; Circumference of erythrocytes; Isoline map of erythrocytes; Section map of erythrocytes.


Sign in / Sign up

Export Citation Format

Share Document