Role of tool pin profiles on wear characteristics of friction stir processed magnesium alloy ZK60/silicon carbide surface composites

2020 ◽  
Vol 51 (2) ◽  
pp. 140-152 ◽  
Author(s):  
M. Vignesh Kumar ◽  
G. Padmanaban ◽  
V. Balasubramanian
2021 ◽  
Vol 880 ◽  
pp. 57-62
Author(s):  
Normariah Che Maideen ◽  
Salina Budin ◽  
Koay Mei Hyie ◽  
Nor Azirah Mohd Fohimi

Stirring tool is one of the important factor that contribute to the successful of Friction Stir Welding (FSW). Role of tool, is to heat the welding zone and stir the material along the process. Many studies have been conducted by other researchers to improve the performance of stirring tool. Similar to this work, it is aimed to investigate and analyze the effect of stirring tool surface condition on wear characteristics in friction stir welding process. Four tools have been fabricated with pre-determined surface condition. Tool 1: H13 without heat treatment and without coating. Tool 2: H13 with heat treatment only. Tool 3: H13 with TiCN coating only and Tool 4: H13 with heat treatment and with TiCN coating. Friction stir welding was performed to test and verify the performance of fabricated tools. Process parameter used are 1270 RPM for rotating speed while 218 mm/min for welding speed. From the result, Tool 4 performed better in terms of physical wear as well as wear rate.


2014 ◽  
Vol 592-594 ◽  
pp. 234-239 ◽  
Author(s):  
A. Thangarasu ◽  
N. Murugan ◽  
I. Dinaharan ◽  
S.J. Vijay

Friction stir processing (FSP) is as a novel modifying technique to synthesize surface composites. An attempt has been made to synthesis AA6082/TiC surface composite using FSP and to analyze the effect of tool rotational speed on microstructure and microhardness of the same. The tool rotational speed was varied from 800 rpm to 1600 rpm in steps of 400 rpm. The traverse speed, axial force, groove width and tool pin profile were kept constant. Scanning electron microscopy was employed to study the microstructure of the fabricated surface composites. The results indicated that the tool rotational speed significantly influenced the area of the surface composite and distribution of TiC particles. Higher rotational speed provided homogenous distribution of TiC particles while lower rotational speed caused poor distribution of TiC particles in the surface composite. The effect of the tool rotational speed on microhardness is also reported in this paper.


2007 ◽  
Vol 539-543 ◽  
pp. 3795-3800 ◽  
Author(s):  
W. Woo ◽  
Hahn Choo ◽  
Donald W. Brown ◽  
Bjørn Clausen ◽  
Zhi Li Feng ◽  
...  

Residual strain profiles in friction-stir processed (FSP) AZ31B magnesium-alloy plates were measured using neutron diffraction. Two different specimens were prepared to investigate the influences of the tool shoulder and the tool pin on the residual-strain profiles: (Case 1) a plate processed with both the stirring pin and tool shoulder, i.e., a regular FSP plate subjected to both the plastic deformation and frictional heating, and (Case 2) a plate processed only with the tool shoulder, i.e., subjected mainly to the frictional heating. The results show that the strain profiles of both cases are qualitatively quite similar. The longitudinal strain is mainly tensile with its maximum near the bead of the FSP plate. On the other hand, the transverse and normal strains are mildly compressive in both Cases 1 and 2.


2007 ◽  
Vol 340-341 ◽  
pp. 1449-1454 ◽  
Author(s):  
Hung Hsiou Hsu ◽  
Yeong-Maw Hwang

Friction stir processes (FSP) are important for enhancing mechanical properties of metal sheets, such as the tensile strength, the elongation, etc. The stress distribution of the tool pin is affected by the thermo-mechanical characteristics of the workpiece in FSP. Recently, magnesium alloy AZ31 is widely used in machine industries due to the light-weight material property. In this paper, a thermo-mechanical model for FSP using three dimensional FEM analyses is proposed for exploring temperature distributions, strain distributions and stress distributions of the workpiece. The heat generated from the plastic deformation and the friction between the head tool and workpiece is considered as the heat source in the simulation of the FSP process. A commercial finite element code – DEFORM 3D is used to carry out the simulation of the plastic deformation of AZ31 sheets during the FSP. The analytical results of temperature, strain and stress distributions of the workpiece and head tool can provide useful knowledge for tool pin design in FSP


Sign in / Sign up

Export Citation Format

Share Document