scholarly journals Microbial community and metabolic function analysis of cigar tobacco leaves during fermentation

2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Fang Liu ◽  
Zhiyong Wu ◽  
Xiaoping Zhang ◽  
Gaolei Xi ◽  
Zhe Zhao ◽  
...  
Science ◽  
2015 ◽  
Vol 351 (6269) ◽  
pp. 158-162 ◽  
Author(s):  
J. L. Metcalf ◽  
Z. Z. Xu ◽  
S. Weiss ◽  
S. Lax ◽  
W. Van Treuren ◽  
...  

2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Jiaxi Zhou ◽  
Lifei Yu ◽  
Jian Zhang ◽  
Jing Liu ◽  
Xiao Zou

Abstract Purpose Microorganisms are important in tobacco aging. These are used to improve the quality of tobacco leaves after threshing and redrying. However, the response of microbial community to the storage environment and time during the tobacco aging process has been less explored. This study aimed to characterize the dynamic changes in microbial community composition and diversity in tobacco leaf samples. Methods In this study, 16S and ITS rRNA gene amplicon sequencing techniques were used to characterize the composition, diversity, and co-occurrence of the microbial community in tobacco leaves stored in two different cities during the 24-month aging. Furthermore, the activities of several enzymes were measured spectrophotometrically, and the correlation between the microbiota and enzyme activity was analyzed by network analysis. Results Shannon diversity and Chao richness of bacterial communities gradually increased during the first 18 months, whereas those of the fungal community decreased. The relative abundance of Proteobacteria decreased, whereas that of Actinobacteria and Bacteroidetes increased. The proportion of Ascomycota gradually increased during the first 18 months and then rapidly decreased, whereas the proportion of Basidiomycota exhibited a completely opposite pattern. The change in the composition of bacterial community and dominant genera in leaves was not significant between Guiyang city and Maotai city storerooms, but that in the fungal community was significant. The network analysis revealed that fungal networks were more complex and compact than bacterial networks, and a strong negative correlation existed between bacteria and fungi. Moreover, the bacterial microbiome showed a strong positive association with amylase activity, while the fungal microbiome positively correlated with cellulase activity. Conclusions This study demonstrated a significant spatiotemporal heterogeneity in the composition of the microbial community during tobacco aging and highlighted the possible influence of the interactions and enzyme activity on microbial diversity and composition. The findings provided a scientific basis for using microorganisms to regulate and control tobacco aging.


2015 ◽  
Vol 201 ◽  
pp. 91-99 ◽  
Author(s):  
Virginia Echavarri-Bravo ◽  
Lynn Paterson ◽  
Thomas J. Aspray ◽  
Joanne S. Porter ◽  
Michael K. Winson ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Dini Hu ◽  
Jianming Yang ◽  
Yingjie Qi ◽  
Boling Li ◽  
Kai Li ◽  
...  

Intestinal microbiota is involved in immune response and metabolism of the host. The frequent use of anthelmintic compounds for parasite expulsion causes disturbance to the equine intestinal microbiota. However, most studies were on the effects of such treatment on the intestinal bacterial microbes; none is on the entire microbial community including archaea and eukaryotic and viral community in equine animals. This study is the first to explore the differences of the microbial community composition and structure in Przewalski's horses prior to and following anthelmintic treatment, and to determine the corresponding changes of their functional attributes based on metagenomic sequencing. Results showed that in archaea, the methanogen of Euryarchaeota was the dominant phylum. Under this phylum, anthelmintic treatment increased the Methanobrevibacter genus and decreased the Methanocorpusculum genus and two other dominant archaea species, Methanocorpusculum labreanum and Methanocorpusculum bavaricum. In bacteria, Firmicutes and Bacteroidetes were the dominant phyla. Anthelmintic treatment increased the genera of Clostridium and Eubacterium and decreased those of Bacteroides and Prevotella and dominant bacteria species. These altered genera were associated with immunity and digestion. In eukaryota, anthelmintic treatment also changed the genera related to digestion and substantially decreased the relative abundances of identified species. In virus, anthelmintic treatment increased the genus of unclassified_d__Viruses and decreased those of unclassified_f__Siphoviridae and unclassified_f__Myoviridae. Most of the identified viral species were classified into phage, which were more sensitive to anthelmintic treatment than other viruses. Furthermore, anthelmintic treatment was found to increase the number of pathogens related to some clinical diseases in horses. The COG and KEGG function analysis showed that the intestinal microbiota of Przewalski's horse mainly participated in the carbohydrate and amino acid metabolism. The anthelmintic treatment did not change their overall function; however, it displaced the population of the functional microbes involved in each function or pathway. These results provide a complete view on the changes caused by anthelmintic treatment in the intestinal microbiota of the Przewalski's horses.


2021 ◽  
Vol 37 (4) ◽  
pp. 404-412
Author(s):  
Hyun Gi Kong ◽  
Hyeonheui Ham ◽  
Mi-Hyun Lee ◽  
Dong Suk Park ◽  
Yong Hwan Lee

Despite the plant microbiota plays an important role in plant health, little is known about the potential interactions of the flower microbiota with pathogens. In this study, we investigated the microbial community of apple blossoms when infected with Erwinia amylovora. The long-read sequencing technology, which significantly increased the genome sequence resolution, thus enabling the characterization of fire blight-induced changes in the flower microbial community. Each sample showed a unique microbial community at the species level. Pantoea agglomerans and P. allii were the most predominant bacteria in healthy flowers, whereas E. amylovora comprised more than 90% of the microbial population in diseased flowers. Furthermore, gene function analysis revealed that glucose and xylose metabolism were enriched in diseased flowers. Overall, our results showed that the microbiome of apple blossoms is rich in specific bacteria, and the nutritional composition of flowers is important for the incidence and spread of bacterial disease.


Sign in / Sign up

Export Citation Format

Share Document