Clarification: Pathogenic role of glial cells in Parkinson's disease

2003 ◽  
Vol 19 (1) ◽  
pp. 118-118 ◽  
Author(s):  
Serge Przedborski
2003 ◽  
Vol 18 (2) ◽  
pp. 121-129 ◽  
Author(s):  
Peter Teismann ◽  
Kim Tieu ◽  
Oren Cohen ◽  
Dong-Kug Choi ◽  
Du Chu Wu ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
V. Franssens ◽  
T. Bynens ◽  
J. Van den Brande ◽  
K. Vandermeeren ◽  
M. Verduyckt ◽  
...  

Over the past decade, the baker’s yeastSaccharomyces cerevisiaehas proven to be a useful model system to investigate fundamental questions concerning the pathogenic role of human proteins in neurodegenerative diseases such as Parkinson’s disease (PD). These so-called humanized yeast models for PD initially focused onα-synuclein, which plays a key role in the etiology of PD. Upon expression of this human protein in the baker’s yeastSaccharomyces cerevisiae, the events leading to aggregation and the molecular mechanisms that result in cellular toxicity are faithfully reproduced. More recently, a similar model to study the presumed pathobiology of theα-synuclein interaction partner synphilin-1 has been established. In this review we will discuss recent advances using these humanized yeast models, pointing to new roles for cell wall integrity signaling, Ca2+homeostasis, mitophagy, and the cytoskeleton.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2623
Author(s):  
Ikuko Miyazaki ◽  
Masato Asanuma

Parkinson’s disease (PD) is the second most common neurodegenerative disease. PD patients exhibit motor symptoms such as akinesia/bradykinesia, tremor, rigidity, and postural instability due to a loss of nigrostriatal dopaminergic neurons. Although the pathogenesis in sporadic PD remains unknown, there is a consensus on the involvement of non-neuronal cells in the progression of PD pathology. Astrocytes are the most numerous glial cells in the central nervous system. Normally, astrocytes protect neurons by releasing neurotrophic factors, producing antioxidants, and disposing of neuronal waste products. However, in pathological situations, astrocytes are known to produce inflammatory cytokines. In addition, various studies have reported that astrocyte dysfunction also leads to neurodegeneration in PD. In this article, we summarize the interaction of astrocytes and dopaminergic neurons, review the pathogenic role of astrocytes in PD, and discuss therapeutic strategies for the prevention of dopaminergic neurodegeneration. This review highlights neuron-astrocyte interaction as a target for the development of disease-modifying drugs for PD in the future.


2014 ◽  
Vol 56 ◽  
pp. 125-135 ◽  
Author(s):  
Shun Yu ◽  
Piu Chan

α-Syn (α-synuclein) is a small soluble acidic protein that is extensively expressed in the nervous system. Genetic, clinical and experimental studies demonstrate that α-syn is strongly implicated in the pathogenesis of PD (Parkinson's disease). However, the pathogenic mechanism remains elusive. In the present chapter, we first describe the normal expression and potential physiological functions of α-syn. Then, we introduce recent research progress related to the pathogenic role of α-syn in PD, with special emphasis on how α-syn oligomers cause the preferential degeneration of dopaminergic neurons in the substantia nigra and the spreading of α-syn pathology in the brain of PD patients.


2021 ◽  
pp. 107385842199000
Author(s):  
Maria Izco ◽  
Estefania Carlos ◽  
Lydia Alvarez-Erviti

Accumulating evidence suggests that exosomes play a key role in Parkinson’s disease (PD). Exosomes may contribute to the PD progression facilitating the spread of pathological alpha-synuclein or activating immune cells. Glial cells also release exosomes, and transmission of exosomes derived from activated glial cells containing inflammatory mediators may contribute to the propagation of the neuroinflammatory response. Glia-to-neuron transmission of exosomes containing alpha-synuclein may contribute to alpha-synuclein propagation and neurodegeneration. Additionally, miRNAs can be transmitted among cells via exosomes inducing changes in the genetic program of the target cell contributing to PD progression. Exosomes also represent a promising drug delivery system. The brain is a difficult target for drugs of all classes because the blood-brain barrier excludes most macromolecular drugs. One of the major challenges is the development of vehicles for robust delivery to the brain. Targeted exosomes may have the potential for delivering therapeutic agents, including proteins and gene therapy molecules, into the brain. This review summarizes recent advances in the role of exosomes in PD pathology progression and their potential use as drug delivery system for PD treatment, the two faces of the exosomes in PD.


2010 ◽  
Vol 32 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Hironori Yokoyama ◽  
Hiroto Uchida ◽  
Hayato Kuroiwa ◽  
Jiro Kasahara ◽  
Tsutomu Araki

Sign in / Sign up

Export Citation Format

Share Document