Computer-aided analysis of nonlinear microwave circuits using frequency-domain nonlinear analysis techniques: The state of the art

Author(s):  
Michael B. Steer ◽  
Chao-Ren Chang ◽  
George W. Rhyne
2011 ◽  
Vol 308-310 ◽  
pp. 2279-2285
Author(s):  
Wei Chen Lee ◽  
Hill Wu

The electrical characteristics of an interconnection system, which include impedance, insertion loss, and return loss, can greatly affect its performance as the signal speed increases. The objective of this research was to understand the discrepancy between the computer-aided analysis and measurement results of an interconnection system, so that a more accurate prediction of the electrical characteristics of this system can be made during the design phase. It was discovered that in both the time and frequency domain the computer-aided analysis results were consistent with the measurement results. Given these conclusions the simulation model was modified to improve the impedance mismatch within the interconnection system. It was found that by properly designing the antipad, the impedance mismatch can be greatly reduced.


Author(s):  
Marco A. Gómez-Martín ◽  
Pedro P. Gómez-Martín ◽  
Pedro A. González-Calero

A key challenge to move forward the state of the art in games-based learning systems is to facilitate instructional content creation by the domain experts. Several decades of research on computer aided instruction have demonstrated that the expert has to be deeply involved in the content creation process, and that is why so much effort has been devoted to building authoring tools of all kinds. However, using videogame technology to support computer aided instruction poses some new challenges on expertfriendly authoring tools, related to technical and cost issues. In this chapter the authors present the state of the art in content creation for games-based learning systems, identifying the main challenges to make this technology cost-effective from the content creation point of view.


Author(s):  
Roman M. Janssen ◽  
Henk Jansen ◽  
Jan-Willem van Wingerden

A novel frequency domain identification (FDI) strategy for the identification of radiation force models from frequency domain hydrodynamic data is proposed. First, a subspace identification method is augmented with a convex constraint that guarantees a stable solution. Then, in a second convex optimization problem, constraints on low- and high frequency asymptotic behavior and passivity are enforced. This novel method, constrained frequency domain subspace identification (CFDSI), is validated by comparing both SISO and MIMO CFDSI results with the state-of-the-art FDI toolbox, which is part of the Marine Systems Simulator MATLAB toolbox. In two test cases, it is shown that the novel algorithm can successfully identify a model with either a SISO or MIMO structure, where stability, passivity and the desired low- and high-frequency asymptotic behavior are guaranteed. For the two test cases presented, the quality of the CFDSI models matches the quality of the state-of-the-art FDI models.


1992 ◽  
Vol 40 (1) ◽  
pp. 12-28 ◽  
Author(s):  
V. Rizzoli ◽  
A. Lipparini ◽  
A. Costanzo ◽  
F. Mastri ◽  
C. Cecchetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document